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Probabilistic PLs So Far
1979 Kozen Semantics of Probabilistic Programs
1999 Panangaden The Category of Markov kernels
2008 Park et al. A Probabilistic Language Based on Sampling Functions
2011 Danos et al. Probabilistic Coherence Spaces as a Model of Higher-order

Probabilistic Computation
2014 Ehrhard et al. Full Abstraction for Probabilistic PCF
2016 Borgstrom et al. A Lambda-Calculus Foundation for Universal Probabilistic

Programming
2016 Staton et al. Semantics for Probabilistic Programming: Higher-order

Functions, Continuous Distributions, and Soft Constraints
2017 Culpepper et al. Contextual Equivalence for Probabilistic Programs with

Continuous Random Variables and Scoring
2017 Staton Commutative Semantics for Probabilistic Programming
2017 Heunen et al. A Convenient Category for Higher-order Probability Theory
2018 Ehrhard et al. Measurable Cones and Stable, Measurable Functions
2018 Wand et al. Contextual Equivalence for a Probabilistic Language

with Continuous Random Variables and Recursion
2019 Vákár et al. A Domain Theory for Statistical Probabilistic Programming

PL Untyped, simply-typed or recursively-typed; CBN or CBV;
First or higher-order; Recursion;

Prob Discrete and/or continuous; Hard and/or soft constraints
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Studying Prob PCF (Vákár, Kammar, and Staton 2019)
Syntax CBV Prob PCF (pPCF)

Denotational Semantics Interpretation of type JΓK and
Interpretation of term JsK ∶ JΓK→T JσK
using ωQbs and Integration Monad T

Operational Semantics Behaviour of term ⟨⟨s⟩⟩
using kernels Ð→n ∶ Λ⊢σ → T Λ⊢σ

Contextual Equivalence s ∼ctx t if for any program context C[−],
⟨⟨C[s]⟩⟩ = ⟨⟨C[t]⟩⟩

Correctness ✓ s Ð→n ∫ α implies

JsK = λf .∫Λ⊢σ
JtKf (α∗Leb)(dt)

Main Lemma ✓ JsK = ⟨⟨s⟩⟩
Adequacy ✓ JsK = JtK implies s ∼ctx t

Full Abstraction ? JsK = JtK if and only if s ∼ctx t
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Adequacy ✓ JsK = JtK implies s ∼ctx t

Full Abstraction ? JsK = JtK if and only if s ∼ctx t

Probabilistic coherence spaces
is a fully abstract model for
Prob PCF (Ehrhard, Tasson,
and Pagani 2014)
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Is ωQbs a fully abstract model for pPCF?

ωQbs (Vákár, Kammar, and Staton 2019)

Object: a triple (X ,MX ,⊑) where
▸ (X ,MX) is a qbs (Heunen et al. 2017);
▸ (X ,⊑) is an ω-cpo
such that MX is closed under point-wise lubs of ω-chains.

Arrow: f that is a qbs-morphism and is Scott-continuous.

pPCF (Vákár, Kammar, and Staton 2019)

Types σ, τ ∶∶=R ∣ σ⇒ τ

Terms s, t ∶∶= x ∣ r ∣ λx .s ∣ s t ∣ if b then s else t ∣ Ys
∣ f (s1, . . . , sn) ∣ score(s) ∣ sample

where r ∈ R and f ∈ ωQbs(Rn,R).
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Proving Full Abstraction
Full Abstraction

JsK = JtK if and only if s ∼ctx t, i.e. ∀C[−], ⟨⟨C[s]⟩⟩ = ⟨⟨C[t]⟩⟩.

(⇒) Adequacy (Vákár, Kammar, and Staton 2019)
(⇐) By contraposition.

1. Assume JsK /= JtK.
2. Construct an element d such that d ● JsK /= d ● JtK.
3. Define d using a term f in Λ, hence J(λx .f x) sK /= J(λx .f x) tK.
4. By Main Lemma, ⟨⟨C[s]⟩⟩ /= ⟨⟨C[t]⟩⟩ where C[−] ≡ (λx .f x) [−]

and hence s /∼ctx t.

For each JσK, identify a subset B ⊆ JσK such that elements in B can
distinguish distinct elements.
Show that every element in B is definable in Λ, i.e.
∀b ∈ B . ∃s ∈ Λ . JsK = b.

denotational
semantics

operational
semantics
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application
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Domain Theoretical Framework
ω-Continuous Domains (Plotkin 1977)

x ≪ y if for any ω-chain (zn) such that y ⊑⊔ zn, x ⊑ zn for
some n ∈ N.

A ω-cpo D is ω-continuous if
there is a countable subset B(D) (basis) such that ∀x ∈ D,
↡x ∩B(D) contains an ω-chain with supremum x .

Two Steps to Full Abstraction

1. Show that for any type σ, JσK is ω-continuous.

1.1 Show that JRK is ω-continuous.
1.2 Find conditions on ω-continuous ω-qbses X and Y such that

ωQbs(X ,Y ) is ω-continuous.
1.3 Find conditions on ω-continuous ω-qbs X such that TX is

ω-continuous.

2. Show that all basis elements of JσK are definable.

x is a lot simpler than y
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Step 1.1: Show that JRK is ω-continuous
JRK ∶= (R,Meas(R,R),=) is not ω-continuous.

Interval Domain (IR,⊑) (Dana Scott)

IR is the set of all closed intervals (partial real numbers) on R.
⊑ is a partial order where r ⊑ q iff r ⊇ q. e.g. [1,4] ⊑ [2,3.4].

(IR,⊑) is ω-continuous with basis B(IR) = {[q1,q2] ∣ q1,q2 ∈ Q}.

Interval ω-qbs (IR,MIR,⊑)

MIR is the smallest set of random elements that
contains all constant functions and λr .[r , r], and
closed under qbs-axioms and pointwise lub of ω-chains.

If f ∶ R→ R is measurable, then λr .[f (r), f (r)] is in MIR.
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Step 1.1: Show that JRK is ω-continuous
Then we have JRK ∶= (IR,MIR,⊑), which is ω-continuous.

But [2,4] is not definable in pPCF.

IpPCF = PCF + Partial Real Numbers (Escardó 1996) + sample +
score(c)

Types σ, τ ∶∶=R ∣ B ∣ σ⇒ τ

Terms s, t ∶∶= x ∣ [r1, r2] ∣ tt ∣ ff ∣ λx .s ∣ s t ∣ if b then s else t ∣ Ys
∣ f (s1, . . . , sn) ∣ score(s) ∣ sample

where f ∈ ωQbs(IRn, IR) ∪ ωQbs(IRn,{tt,ff}
⊥
)

Adequacy

ωQbs is an adequate model for IpPCF using the integration monad
T .
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Step 1.2: Conditions on ω-continuous ω-qbs such that the
exponential is also ω-continuous

Definitions on ω-qbs

Let (X ,MX ,⊑) be an ω-qbs. It is
pointed if (X ,⊑) is pointed;
bounded-complete if (X ,⊑) and MX are bounded-complete;
stable if (X ,⊑) is stable, i.e.
U ≪ V and U ≪ V ′ implies U ≪ V ∩V ′ for all U,V ,V ′ ∈ Xσ;
tree-like if (X ,⊑) is tree-like, i.e. ↓x are chains;
ω-continuous if (X ,⊑) is ω-continuous;
upper-measurable if all open sets in Xσ is measurable;
sharp if it is ω-continuous and upper-measurable.

Using results in Erker, Escardó, and Keimel 1998; Goubault-Larrecq 2013,
For any sharp ω-qbses X and Y where Y is bounded-complete and pointed
and either X is stable or Y is tree-like, the exponential ωQbs(X ,Y ) is
bounded-complete, pointed and sharp (hence stable).

For any ω-continuous ω-cpos
X ,Y where Y is b-c and pointed,
ωCpo(X ,Y ) is b-c, pointed and
ω-continuous.
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stable if (X ,⊑) is stable, i.e.
U ≪ V and U ≪ V ′ implies U ≪ V ∩V ′ for all U,V ,V ′ ∈ Xσ;
tree-like if (X ,⊑) is tree-like, i.e. ↓x are chains;
ω-continuous if (X ,⊑) is ω-continuous;
upper-measurable if all open sets in Xσ is measurable;
sharp if it is ω-continuous and upper-measurable.

Using results in Erker, Escardó, and Keimel 1998; Goubault-Larrecq 2013,
For any sharp ω-qbses X and Y where Y is bounded-complete and pointed
and either X is stable or Y is tree-like, the exponential ωQbs(X ,Y ) is
bounded-complete, pointed and sharp (hence stable).

For any ω-continuous ω-cpos
X ,Y where Y is b-c and pointed,
ωCpo(X ,Y ) is b-c, pointed and
ω-continuous.

b-c and ω-continuous
implies stability
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Step 1.3: Condition on ω-continuous ω-qbs X such that
TX is ω-continuous.

Integration monad TX is the ω-chain closure of the image of
∫ ∶= λαf . ∫α−1(X) f ○ α dLeb (Vákár, Kammar, and Staton 2019).

We do not know if it is ω-continuous.
Interval Integration Monad IT

∮ ∶ IR⇒ X⊥ Ð→ (X ⇒ L+)⇒ L+

α z→ ∫ (α ○ λr .[r , r])

ITX is the ω-chain closure of the image of ∮
MITX is the ω-chain closure {∮ ○ α ∣ α ∈ R⇒ (IR⇒ X⊥)}

ITX ⊆ TX .
ITX is an ω-qbs.
IT is a commutative sub-monad of J .
For any sharp ω-qbs X , ITX is bounded-complete, pointed and
sharp.

Randomisation Lemma:
every s-finite measure can
be defined as the push-
forward of a random ele-
ment along Leb, α∗Leb
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Interval Integration Monad IT
Example: Dirac distribution Iδx ∶ IR→ X⊥

δx(A) ∶= {1 if x ∈ A,
0 otherwise.

Iδx ∶= λ[r1, r2].{
x if r1, r2 ∈ (0, 1),
⊥ otherwise.

Iδx is a qbs-morphism and Scott-continuous. Moreover,

∮ Iδx = ∫ (Iδx ○ λr .[r , r]) = ∫ (λr .{x if r ∈ (0, 1),
⊥ otherwise. )

Push-forward of α along Leb is
(α∗Leb)(A) = Leb({r ∈ R ∣ α(r) ∈ A})

= {Leb((0, 1)) = 1 if x ∈ A,
0 otherwise.

= δx(A)

Adequacy: ωQbs is an adequate model for IpPCF using the interval integration
monad IT .
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Step 1: JσK is sharp

Recall our results

1.1 JRK is ω-continuous.
1.2 ωQbs(X ,Y ) is bounded-complete, pointed and sharp, if X and

Y are bounded-complete, pointed and sharp.
1.3 ITX is bounded-complete, pointed and sharp, if X is sharp.

For any type σ, JσK is bounded-complete, pointed and sharp.

JRKI ∶= (IR,MIR,⊑)⊥ is bounded-complete, pointed and sharp.
JBKI ∶= ({tt,ff},M,=)

⊥
is bounded-complete, pointed and

sharp.
Jσ⇒ τKI ∶= JσKI ⇒ IT JτKI is bounded-complete, pointed and
sharp if JσKI and JτKI are also.
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Is ωQbs a fully abstract model for IpPCF?

Full Abstraction

JsK = JtK if and only if s ∼ctx t.

Two Steps to Full Abstraction

1. For any type σ, JσK is sharp. ✓
1.1 JRK is bounded-complete, pointed and sharp. ✓
1.2 ωQbs(X ,Y ) is bounded-complete, pointed and sharp, if X and

Y are bounded-complete, pointed and sharp. ✓
1.3 ITX is bounded-complete, pointed and sharp with basis

{
n
⊔
i=1
ηi ∣ ηi ∈ ∮ B(IR⇒ X⊥) ∧ n > 0}, if X is sharp. ✓

2. Show that all basis elements of JσK are definable.
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Step 2: Are all basis elements of JσK definable?
Proposition

If all elements of B(IR⇒ JσK) are definable, then all elements in
∮ B(IR⇒ JσK) are definable. (Used the proof idea in the definabil-
ity result in Staton 2017)

Conjecture

If IpPCF is extended with parallel function symbols and supremum
operator, then all basis elements of JσK are definable.

CBV PCF extended with parallel-if, lazy PCF and PCF with
control are fully abstract. (Sieber 1990)
Real PCF extended with sup is universal and hence fully
abstract, where sup

[a,b] f ∶= ⊔
P∈P[a,b]

max
x∈P

f (x). (Edalat and

Escardó 1996)
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Summary and Future Work
Syntax Prob PCF with Partial Real Numbers (IpPCF)
Semantics Using ωQbs and Interval Integration Monad IT
Correctness ✓ s Ð→n ∮ α implies JsK = λf . ∫Λ⊢σJtKf (α∗Leb)(dt)
Adequacy ✓ JsK = JtK implies s ∼ctx t

Is ωQbs a fully abstract model for IpPCF?

1. For any type σ, JσK is sharp. ✓
1.1 ωQbs(X ,Y ) is bounded-complete, pointed and sharp, if X and

Y are bounded-complete, pointed and sharp. ✓
1.2 ITX is bounded-complete, pointed and sharp with basis

{
n
⊔
i=1
ηi ∣ ηi ∈ ∮ B(IR⇒ X⊥) ∧ n > 0}, if X is sharp. ✓

2. Show that all basis elements of JσK are definable.
Conjecture: If IpPCF is extended with parallel function
symbols and supremum operator, then all basis elements of JσK
are definable.

Slide 15


