Higher-Order Probability Theory on Interval Domains

Carol Mak and Luke Ong

Department of Computer Science University of Oxford

Second Workshop on Probabilistic Interactive and Higher-Order Computation, Bologna, 6th-7th Feb 2019

Probabilistic PLs So Far

1979	Kozen	Semantics of Probabilistic Programs
1999	Panangaden	The Category of Markov kernels
2008	Park et al.	A Probabilistic Language Based on Sampling Functions
2011	Danos et al.	Probabilistic Coherence Spaces as a Model of Higher-order Probabilistic Computation
2014	Ehrhard et al.	Full Abstraction for Probabilistic PCF
2016	Borgstrom et al.	A Lambda-Calculus Foundation for Universal Probabilistic
		Programming
2016	Staton et al.	Semantics for Probabilistic Programming: Higher-order
		Functions, Continuous Distributions, and Soft Constraints
2017	Culpepper et al.	Contextual Equivalence for Probabilistic Programs with
		Continuous Random Variables and Scoring
2017	Staton	Commutative Semantics for Probabilistic Programming
2017	Heunen et al.	A Convenient Category for Higher-order Probability Theory
2018	Ehrhard et al.	Measurable Cones and Stable, Measurable Functions
2018	Wand et al.	Contextual Equivalence for a Probabilistic Language
		with Continuous Random Variables and Recursion
2019	Vákár et al.	A Domain Theory for Statistical Probabilistic Programming

PL Untyped, simply-typed or recursively-typed; CBN or CBV; First or higher-order; Recursion;

Prob Discrete and/or continuous; Hard and/or soft constraints

Probabilistic PLs So Far

1979	Kozen	Semantics of Probabilistic Programs
1999	Panangaden	The Category of Markov kernels
2008	Park et al.	A Probabilistic Language Based on Sampling Functions
2011	Danos et al.	Probabilistic Coherence Spaces as a Model of Higher-order Probabilistic Computation
2014	Ehrhard et al.	Full Abstraction for Probabilistic PCF
2016	Borgstrom et al.	A Lambda-Calculus Foundation for Universal Probabilistic
		Programming
2016	Staton et al.	Semantics for Probabilistic Programming: Higher-order
		Functions, Continuous Distributions, and Soft Constraints
2017	Culpepper et al.	Contextual Equivalence for Probabilistic Programs with
		Continuous Random Variables and Scoring
2017	Staton	Commutative Semantics for Probabilistic Programming
2017	Heunen et al.	A Convenient Category for Higher-order Probability Theory
2018	Ehrhard et al.	Measurable Cones and Stable, Measurable Functions
2018	Wand et al.	Contextual Equivalence for a Probabilistic Language
		with Continuous Random Variables and Recursion
2019	Vákár et al.	A Domain Theory for Statistical Probabilistic Programming

PL Untyped, simply-typed or recursively-typed; CBN or CBV; First or higher-order; Recursion; (CBV PCF)

Prob Discrete and/or continuous; Hard and/or soft constraints

Studying Prob PCF (Vákár, Kammar, and Staton 2019)				
Syntax	CBV Prob PCF (pPCF)			
Denotational Semantics	Interpretation of type $\llbracket \Gamma \rrbracket$ and Interpretation of term $\llbracket s \rrbracket : \llbracket \Gamma \rrbracket \to T \llbracket \sigma \rrbracket$ using $\omega \mathbf{Qbs}$ and Integration Monad T			
Operational Semantics	Behaviour of term $\langle\!\langle s \rangle\!\rangle$ using kernels $\longrightarrow_n : \Lambda^{\vdash \sigma} \to T \Lambda^{\vdash \sigma}$			
Contextual Equivalence	$s \sim_{ctx} t$ if for any program context $C[-]$, $\langle \langle C[s] \rangle \rangle = \langle \langle C[t] \rangle \rangle$			
Correctness √	$s \longrightarrow_n \int \alpha$ implies $\llbracket s \rrbracket = \lambda f. \int_{\Lambda^{\vdash \sigma}} \llbracket t \rrbracket f (\alpha_* \text{Leb})(dt)$			
Main Lemma √	$\llbracket s \rrbracket = \langle \langle s \rangle \rangle$			
Adequacy \checkmark	$\llbracket s \rrbracket = \llbracket t \rrbracket$ implies $s \sim_{ctx} t$			
Full Abstraction ?	$\llbracket s \rrbracket = \llbracket t \rrbracket$ if and only if $s \sim_{ctx} t$			

.

Studying Prob PCF (Vákár, Kammar, and Staton 2019)				
Syntax	CBV Prob PCF (pPCF)			
Denotational Semantics	Interpretation of type $\llbracket \Gamma \rrbracket$ and Interpretation of term $\llbracket s \rrbracket : \llbracket \Gamma \rrbracket \to T \llbracket \sigma \rrbracket$ using $\omega \mathbf{Qbs}$ and Integration Monad T			
Operational Semantics	Behaviour of term $\langle\!\langle s \rangle\!\rangle$ using kernels $\longrightarrow_n : \Lambda^{\vdash \sigma} \to T \Lambda^{\vdash \sigma}$			
Contextual Equivalence	$s \sim_{ctx} t$ if for any program context $C[-]$, $\langle\!\langle C[s] \rangle\!\rangle = \langle\!\langle C[t] \rangle\!\rangle$			
Correctness \checkmark	$s \longrightarrow_n \int \alpha$ implies $\llbracket s \rrbracket = \lambda f. \int_{\Lambda} Probabilistic coherence spaces$ is a fully abstract model for			
Main Lemma \checkmark	$[s] = \langle \langle s \rangle \rangle$ Prob PCF (Ehrhard, Tasson, and Pagani 2014)			
Adequacy \checkmark	[s] = [t] impressively t			
Full Abstraction ?	$\llbracket s \rrbracket = \llbracket t \rrbracket$ if and only if $s \sim_{ctx} t$			

Is ω **Qbs** a fully abstract model for pPCF?

Types
$$\sigma, \tau ::= \Re \mid \sigma \Rightarrow \tau$$

Terms $s, t ::= x \mid r \mid \lambda x.s \mid st \mid \text{if } b \text{ then } s \text{ else } t \mid Ys$
 $\mid \underline{f}(s_1, \dots, s_n) \mid \text{score}(s) \mid \text{sample}$

where $r \in \mathbb{R}$ and $f \in \omega \mathbf{Qbs}(\mathbb{R}^n, \mathbb{R})$.

Full Abstraction

(⇒) Adequacy (Vákár, Kammar, and Staton 2019)
(⇐) By contraposition.

- 1. Assume $\llbracket s \rrbracket \neq \llbracket t \rrbracket$.
- 2. Construct an element *d* such that $d \bullet [s] \neq d \bullet [t]$.
- 3. Define *d* using a term *f* in Λ , hence $[(\lambda x.f x) s] \neq [(\lambda x.f x) t]$.
- 4. By Main Lemma, $\langle\!\langle C[s] \rangle\!\rangle \neq \langle\!\langle C[t] \rangle\!\rangle$ where $C[-] \equiv (\lambda x.f x)[-]$ and hence $s \neq_{ctx} t$.

Full Abstraction

Full Abstraction

$$\llbracket s \rrbracket = \llbracket t \rrbracket \text{ if and only if } s \sim_{ctx} t, \text{ i.e. } \forall C[-], \langle \langle C[s] \rangle \rangle = \langle \langle C[t] \rangle \rangle.$$

 (\Rightarrow) Adequacy (Vákár, Kammar, and Staton 2019)

(\Leftarrow) By contraposition.

- 1. Assume $\llbracket s \rrbracket \neq \llbracket t \rrbracket$.
- 2. Construct an element d such that $d \bullet [s] \neq d \bullet [t]$.
- 3. Define *d* using a term *f* in Λ , hence $[(\lambda x.f x) s] \neq [(\lambda x.f x) t]$.
- 4. By Main Lemma, $\langle\!\langle C[s] \rangle\!\rangle \neq \langle\!\langle C[t] \rangle\!\rangle$ where $C[-] \equiv (\lambda x.f x)[-]$ and hence $s \neq_{ctx} t$.
- For each [[σ]], identify a subset B ⊆ [[σ]] such that elements in B can distinguish distinct elements.

Full Abstraction

$$\llbracket s \rrbracket = \llbracket t \rrbracket \text{ if and only if } s \sim_{ctx} t, \text{ i.e. } \forall C[-], \langle \langle C[s] \rangle \rangle = \langle \langle C[t] \rangle \rangle.$$

 (\Rightarrow) Adequacy (Vákár, Kammar, and Staton 2019)

 (\Leftarrow) By contraposition.

- 1. Assume $\llbracket s \rrbracket \neq \llbracket t \rrbracket$.
- 2. Construct an element d such that $d \bullet [\![s]\!] \neq d \bullet [\![t]\!]$.
- 3. Define *d* using a term *f* in Λ , hence $[(\lambda x.f x) s] \neq [(\lambda x.f x) t]$.
- 4. By Main Lemma, $\langle\!\langle C[s] \rangle\!\rangle \neq \langle\!\langle C[t] \rangle\!\rangle$ where $C[-] \equiv (\lambda x.f x)[-]$ and hence $s \neq_{ctx} t$.
- For each $[\![\sigma]\!]$, identify a subset $B \subseteq [\![\sigma]\!]$ such that elements in B can distinguish distinct elements.

• Show that every element in *B* is definable in Λ , i.e. $\forall b \in B : \exists s \in \Lambda : [[s]] = b$.

Step 1.1: Show that $[\![\mathfrak{R}]\!]$ is ω -continuous $[\![\mathfrak{R}]\!] := (\mathbb{R}, \mathbf{Meas}(\mathbb{R}, \mathbb{R}), =)$ is **not** ω -continuous.

Step 1.1: Show that $[\![\mathfrak{R}]\!]$ is ω -continuous $[\![\mathfrak{R}]\!] := (\mathbb{R}, \mathsf{Meas}(\mathbb{R}, \mathbb{R}), =)$ is **not** ω -continuous. Interval Domain ($\mathbf{I}\mathbb{R}, \subseteq$) (Dana Scott) I \mathbb{R} is the set of all closed intervals (partial real numbers) on \mathbb{R} . \subseteq is a partial order where $\mathbf{r} \subseteq \mathbf{q}$ iff $\mathbf{r} \supseteq \mathbf{q}$. e.g. $[1, 4] \subseteq [2, 3.4]$. ($\mathbf{I}\mathbb{R}, \subseteq$) is ω -continuous with basis $B(\mathbf{I}\mathbb{R}) = \{[q_1, q_2] \mid q_1, q_2 \in \mathbb{Q}\}$. Step 1.1: Show that $[\![\mathfrak{R}]\!]$ is $\omega\text{-continuous}$

 $\llbracket \mathfrak{R} \rrbracket := (\mathbb{R}, \mathbf{Meas}(\mathbb{R}, \mathbb{R}), =)$ is **not** ω -continuous.

Interval Domain (Iℝ, ⊆) (Dana Scott)

 $I\mathbb{R}$ is the set of all closed intervals (partial real numbers) on $\mathbb{R}.$

 \sqsubseteq is a partial order where $\mathbf{r} \sqsubseteq \mathbf{q}$ iff $\mathbf{r} \supseteq \mathbf{q}$. e.g. $[1,4] \sqsubseteq [2,3.4]$.

 $(\mathbb{I}\mathbb{R}, \subseteq)$ is ω -continuous with basis $B(\mathbb{I}\mathbb{R}) = \{[q_1, q_2] \mid q_1, q_2 \in \mathbb{Q}\}.$

Interval ω -qbs ($\mathbb{I}\mathbb{R}, M_{\mathbb{I}\mathbb{R}}, \subseteq$)

 $M_{I\mathbb{R}}$ is the smallest set of random elements that

- contains all constant functions and $\lambda r.[r, r]$, and
- closed under qbs-axioms and pointwise lub of ω -chains.

If $f : \mathbb{R} \to \mathbb{R}$ is measurable, then $\lambda r.[f(r), f(r)]$ is in $M_{\mathbb{IR}}$.

• Then we have $\llbracket \mathfrak{R} \rrbracket := (I\mathbb{R}, M_{I\mathbb{R}}, \sqsubseteq)$, which is ω -continuous.

Step 1.1: Show that $[\![\mathfrak{R}]\!]$ is $\omega\text{-continuous}$

- Then we have $[\Re] := (I\mathbb{R}, M_{I\mathbb{R}}, \subseteq)$, which is ω -continuous.
- But [2,4] is not definable in pPCF.

- Then we have $[\![\mathfrak{R}]\!] := (I\mathbb{R}, M_{I\mathbb{R}}, \sqsubseteq)$, which is ω -continuous.
- But [2,4] is not definable in pPCF.

IpPCF = PCF + Partial Real Numbers (Escardó 1996) + sample + score(*c*)

Types
$$\sigma, \tau ::= \Re \mid \mathfrak{B} \mid \sigma \Rightarrow \tau$$

Terms $s, t ::= x \mid [r_1, r_2] \mid tt \mid ff \mid \lambda x.s \mid st \mid if b$ then s else $t \mid Ys \mid \underline{f}(s_1, \dots, s_n) \mid \text{score}(s) \mid \text{sample}$

where $f \in \omega \mathbf{Qbs}(\mathbf{I}\mathbb{R}^n, \mathbf{I}\mathbb{R}) \cup \omega \mathbf{Qbs}(\mathbf{I}\mathbb{R}^n, \{\mathsf{tt}, \mathsf{ff}\}_{\perp})$

- Then we have $[\![\mathfrak{R}]\!] := (I\mathbb{R}, M_{I\mathbb{R}}, \sqsubseteq)$, which is ω -continuous.
- But [2,4] is not definable in pPCF.

IpPCF = PCF + Partial Real Numbers (Escardó 1996) + sample + score(c)

Types
$$\sigma, \tau \coloneqq \Re \mid \mathfrak{B} \mid \sigma \Rightarrow \tau$$

Terms
$$s, t ::= x \mid [r_1, r_2] \mid tt \mid ff \mid \lambda x.s \mid st \mid if b$$
 then s else $t \mid Ys \mid \underline{f}(s_1, \dots, s_n) \mid score(s) \mid sample$

where $f \in \omega \mathbf{Qbs}(\mathbf{I}\mathbb{R}^n, \mathbf{I}\mathbb{R}) \cup \omega \mathbf{Qbs}(\mathbf{I}\mathbb{R}^n, \{\mathsf{tt}, \mathsf{ff}\}_{\perp})$

- Then we have $[\![\mathfrak{R}]\!] := (I\mathbb{R}, M_{I\mathbb{R}}, \sqsubseteq)$, which is ω -continuous.
- But [2,4] is not definable in pPCF.

IpPCF = PCF + Partial Real Numbers (Escardó 1996) + sample + score(*c*)

$$\mathsf{Types} \quad \sigma, \tau \coloneqq \mathfrak{R} \mid \mathfrak{B} \mid \sigma \Rightarrow \tau$$

Terms $s, t \coloneqq x \mid [r_1, r_2] \mid \text{tt} \mid \text{ff} \mid \lambda x.s \mid st \mid \text{if } b \text{ then } s \text{ else } t \mid Ys$ $\mid \underline{f}(s_1, \dots, s_n) \mid \text{score}(s) \mid \text{sample}$

where $\mathbf{f} \in \omega \mathbf{Qbs}(\mathbf{I}\mathbb{R}^n, \mathbf{I}\mathbb{R}) \cup \omega \mathbf{Qbs}(\mathbf{I}\mathbb{R}^n, \{\mathsf{tt}, \mathsf{ff}\}_{\perp})$

cons_(-), tail_(-) and (-) <_ \perp r can be expressed via <u>f</u>

- Then we have $[\![\mathfrak{R}]\!] := (I\mathbb{R}, M_{I\mathbb{R}}, \sqsubseteq)$, which is ω -continuous.
- But [2,4] is not definable in pPCF.

IpPCF = PCF + Partial Real Numbers (Escardó 1996) + sample + score(*c*)

$$\mathsf{Types} \quad \sigma, \tau \coloneqq \mathfrak{R} \mid \mathfrak{B} \mid \sigma \Rightarrow \tau$$

Terms $s, t ::= x \mid [r_1, r_2] \mid tt \mid ff \mid \lambda x.s \mid st \mid if b$ then s else $t \mid Ys \mid \underline{f}(s_1, \dots, s_n) \mid \text{score}(s) \mid \text{sample}$

where $f \in \omega \mathbf{Qbs}(\mathbf{I}\mathbb{R}^n, \mathbf{I}\mathbb{R}) \cup \omega \mathbf{Qbs}(\mathbf{I}\mathbb{R}^n, \{\mathsf{tt}, \mathsf{ff}\}_{\perp})$

Adequacy

 $\omega \mathbf{Qbs}$ is an adequate model for IpPCF using the integration monad $\mathcal{T}.$

Step 1.2: Conditions on ω -continuous ω -qbs such that the **exponential** is also ω -continuous For any ω -continuous ω -cpos X, Y where Y is b-c and pointed, ω **Cpo**(X, Y) is b-c, pointed and ω -continuous.

Step 1.2: Conditions on ω -continuous ω -qbs such that the **exponential** is also ω -continuous For any ω -continuous ω -cpos X, Y where Y is b-c and pointed, Definitions on ω -gbs $\omega \mathbf{Cpo}(X, Y)$ is b-c, pointed and ω -continuous. Let (X, M_X, \subseteq) be an ω -qbs. It is • **pointed** if (X, \subseteq) is pointed; • **bounded-complete** if (X, \subseteq) and M_X are bounded-complete; • stable if (X, \subseteq) is stable, i.e. $U \ll V$ and $U \ll V'$ implies $U \ll V \cap V'$ for all $U, V, V' \in X_{\sigma}$; • **tree-like** if (X, \subseteq) is tree-like, i.e. $\downarrow x$ are chains; • ω -continuous if (X, \subseteq) is ω -continuous; • **upper-measurable** if all open sets in X_{σ} is measurable;

• **sharp** if it is ω -continuous and upper-measurable.

Using results in Erker, Escardó, and Keimel 1998; Goubault-Larrecq 2013, For any sharp ω -qbses X and Y where Y is bounded-complete and pointed and either X is stable or Y is tree-like, the exponential $\omega \mathbf{Qbs}(X, Y)$ is bounded-complete, pointed and sharp (hence stable).

Step 1.2: Conditions on ω -continuous ω -qbs such that the **exponential** is also ω -continuous For any ω -continuous ω -cpos X, Y where Y is b-c and pointed, Definitions on ω -gbs $\omega \mathbf{Cpo}(X, Y)$ is b-c, pointed and ω -continuous. Let (X, M_X, \subseteq) be an ω -qbs. It is • **pointed** if (X, \subseteq) is pointed; • **bounded-complete** if (X, \subseteq) and M_X are bounded-complete; • stable if (X, \subseteq) is stable, i.e. $U \ll V$ and $U \ll V'$ implies $U \ll V \cap V'$ for all $U, V, V' \in X_{\sigma}$; • **tree-like** if (X, \subseteq) is tree-like, i.e. $\downarrow x$ are chains; • ω -continuous if (X, \subseteq) is ω -continuous; • upper-measurable if all open sets in X_{σ} is measurable; • sharp if it is ω -continuous and upper-measurable. Using results in Erker, Escardó, and Keimel 1998; Goubault-Larrecq 2013, For any sharp ω -qbses X and Y where Y is bounded-complete and pointed and either X is stable or Y is tree-like, the exponential $\omega Qbs(X, Y)$ is bounded-complete, pointed and sharp (hence stable).

b-c and ω -continuous implies stability

Step 1.3: Condition on ω -continuous ω -qbs X such that TX is ω -continuous.

• Integration monad *TX* is the ω -chain closure of the image of $\int := \lambda \alpha f \cdot \int_{\alpha^{-1}(X)} f \circ \alpha d$ Leb (Vákár, Kammar, and Staton 2019).

Randomisation Lemma: every s-finite measure can be defined as the pushforward of a random element along Leb, α_* Leb

Step 1.3: Condition on ω -continuous ω -qbs X such that TX is ω -continuous.

- Integration monad *TX* is the ω -chain closure of the image of $\int := \lambda \alpha f \cdot \int_{\alpha^{-1}(X)} f \circ \alpha \, d$ Leb (Vákár, Kammar, and Staton 2019).
- We do not know if it is ω -continuous.

Step 1.3: Condition on ω -continuous ω -qbs X such that TX is ω -continuous.

- Integration monad *TX* is the ω -chain closure of the image of $\int := \lambda \alpha f \cdot \int_{\alpha^{-1}(X)} f \circ \alpha \, d$ Leb (Vákár, Kammar, and Staton 2019).
- We do not know if it is ω -continuous.

Interval Integration Monad IT

$$\oint : \quad \mathbf{I}\mathbb{R} \Rightarrow X_{\perp} \longrightarrow (X \Rightarrow \mathbb{L}_{+}) \Rightarrow \mathbb{L}_{+}$$
$$\alpha \longmapsto \int (\alpha \circ \lambda r.[r, r])$$

IT X is the ω -chain closure of the image of $\oint M_{ITX}$ is the ω -chain closure $\{ \oint \circ \alpha \mid \alpha \in \mathbb{R} \Rightarrow (I\mathbb{R} \Rightarrow X_1) \}$

- $TX \subseteq TX$.
- ITX is an ω -qbs.
- IT is a commutative sub-monad of J.
- For any sharp ω-qbs X, ITX is bounded-complete, pointed and sharp.

Interval Integration Monad $\ensuremath{\mathsf{IT}}$

Example: Dirac distribution $I\delta_x : I\mathbb{R} \to X_{\perp}$

$$\delta_x(A) := \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise.} \end{cases}$$

Interval Integration Monad IT

Example: Dirac distribution $I\delta_x : I\mathbb{R} \to X_\perp$

$$\delta_x(A) := \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise.} \end{cases} \quad \mathbf{I} \delta_x := \lambda[r_1, r_2]. \begin{cases} x & \text{if } r_1, r_2 \in (0, 1), \\ \bot & \text{otherwise.} \end{cases}$$

 $I\delta_{x}$ is a qbs-morphism and Scott-continuous. Moreover,

$$\oint \mathbf{I}\delta_x = \int (\mathbf{I}\delta_x \circ \lambda r.[r,r]) = \int (\lambda r. \begin{cases} x & \text{if } r \in (0,1), \\ \bot & \text{otherwise.} \end{cases}$$

Adequacy: ω Qbs is an adequate model for IpPCF using the interval integration monad IT.

Interval Integration Monad IT

Example: Dirac distribution $I\delta_x : I\mathbb{R} \to X_\perp$

$$\delta_x(A) := \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise.} \end{cases} \quad \mathbf{I} \delta_x := \lambda[r_1, r_2]. \begin{cases} x & \text{if } r_1, r_2 \in (0, 1), \\ \bot & \text{otherwise.} \end{cases}$$

 $I\delta_{\mathsf{x}}$ is a qbs-morphism and Scott-continuous. Moreover,

$$\oint \mathbf{I}\delta_x = \int (\mathbf{I}\delta_x \circ \lambda r.[r,r]) = \int (\lambda r. \begin{cases} x & \text{if } r \in (0,1), \\ \bot & \text{otherwise.} \end{cases}$$

Push-forward of α along Leb is

$$(\alpha_* \operatorname{Leb})(A) = \operatorname{Leb}(\{r \in \mathbb{R} \mid \alpha(r) \in A\})$$
$$= \begin{cases} \operatorname{Leb}((0,1)) = 1 & \text{if } x \in A, \\ 0 & \text{otherwise.} \end{cases}$$
$$= \delta_x(A)$$

Adequacy: ω Qbs is an adequate model for IpPCF using the interval integration monad IT.

Step 1: $[\![\sigma]\!]$ is sharp

Recall our results

- 1.1 $[\Re]$ is ω -continuous.
- 1.2 $\omega Qbs(X, Y)$ is bounded-complete, pointed and sharp, if X and Y are bounded-complete, pointed and sharp.
- 1.3 IT X is bounded-complete, pointed and **sharp**, if X is sharp.

Step 1: $[\![\sigma]\!]$ is sharp

Recall our results

- 1.1 $[\![\mathfrak{R}]\!]$ is $\omega\text{-continuous.}$
- 1.2 $\omega Qbs(X, Y)$ is bounded-complete, pointed and sharp, if X and Y are bounded-complete, pointed and sharp.
- 1.3 ITX is bounded-complete, pointed and **sharp**, if X is sharp.

For any type σ , $\llbracket \sigma \rrbracket$ is bounded-complete, pointed and sharp.

- $[\Re]_{\mathbf{I}} := (\mathbf{I}\mathbb{R}, M_{\mathbf{I}\mathbb{R}}, \sqsubseteq)_{\perp}$ is bounded-complete, pointed and sharp.
- [[𝔅]]_I := ({tt, ff}, M, =)⊥ is bounded-complete, pointed and sharp.
- $\llbracket \sigma \Rightarrow \tau \rrbracket_{\mathbf{I}} \coloneqq \llbracket \sigma \rrbracket_{\mathbf{I}} \Rightarrow \mathbf{I} T \llbracket \tau \rrbracket_{\mathbf{I}}$ is bounded-complete, pointed and sharp if $\llbracket \sigma \rrbracket_{\mathbf{I}}$ and $\llbracket \tau \rrbracket_{\mathbf{I}}$ are also.

Is ωQbs a fully abstract model for IpPCF?

Full Abstraction

$$[s]] = [[t]]$$
 if and only if $s \sim_{ctx} t$.

Two Steps to Full Abstraction

For any type σ, [[σ]] is sharp. √
1.1 [[ℜ]] is bounded-complete, pointed and sharp. √
1.2 ωQbs(X, Y) is bounded-complete, pointed and sharp, if X and Y are bounded-complete, pointed and sharp. √
1.3 ITX is bounded-complete, pointed and sharp with basis
 {[______] η_i | η_i ∈ ∫ B(Iℝ ⇒ X_⊥) ∧ n > 0 }, if X is sharp. √
Show that all basis elements of [[σ]] are definable.

Proposition

If all elements of $B(\mathbb{I}\mathbb{R} \Rightarrow \llbracket \sigma \rrbracket)$ are definable, then all elements in $\oint B(\mathbb{I}\mathbb{R} \Rightarrow \llbracket \sigma \rrbracket)$ are definable. (Used the proof idea in the definability result in Staton 2017)

Proposition

If all elements of $B(\mathbb{I}\mathbb{R} \Rightarrow \llbracket \sigma \rrbracket)$ are definable, then all elements in $\oint B(\mathbb{I}\mathbb{R} \Rightarrow \llbracket \sigma \rrbracket)$ are definable. (Used the proof idea in the definability result in Staton 2017)

Conjecture

If IpPCF is extended with parallel function symbols and supremum operator, then all basis elements of $[\![\sigma]\!]$ are definable.

- CBV PCF extended with parallel-if, lazy PCF and PCF with control are fully abstract. (Sieber 1990)
- Real PCF extended with sup is universal and hence fully abstract, where $\sup_{[a,b]} f := \bigsqcup_{P \in \mathfrak{P}[a,b]} \max_{x \in P} f(x)$. (Edalat and Encode)

Escardó 1996)

Proposition

If all elements of $B(\mathbb{I}\mathbb{R} \Rightarrow \llbracket \sigma \rrbracket)$ are definable, then all elements in $\oint B(\mathbb{I}\mathbb{R} \Rightarrow \llbracket \sigma \rrbracket)$ are definable. (Used the proof idea in the definability result in Staton 2017)

Conjecture

If IpPCF is extended with parallel function symbols and supremum operator, then all basis elements of $[\![\sigma]\!]$ are definable.

- CBV PCF extended with parallel-if, lazy PCF and PCF with control are fully abstract. (Sieber 1990)
- Real PCF extended with sup is universal and hence fully abstract, where $\sup_{[a,b]} f := \bigsqcup_{P \in \mathfrak{P}[a,b]} \max_{x \in P} f(x)$. (Edalat and Escardó 1996)

Proposition

If all elements of $B(\mathbb{I}\mathbb{R} \Rightarrow \llbracket \sigma \rrbracket)$ are definable, then all elements in $\oint B(\mathbb{I}\mathbb{R} \Rightarrow \llbracket \sigma \rrbracket)$ are definable. (Used the proof idea in the definability result in Staton 2017)

Conjecture

If IpPCF is extended with parallel function symbols and supremum operator, then all basis elements of $[\![\sigma]\!]$ are definable.

- CBV PCF extended with parallel-if, lazy PCF and PCF with control are fully abstract. (Sieber 1990)
- Real PCF extended with sup is universal and hence fully abstract, where $\sup_{[a,b]} f := \bigsqcup_{P \in \mathfrak{P}[a,b]} \max_{x \in P} f(x)$. (Edalat and Escardó 1996)

Slide 14

Summary and Future Work

Syntax Semantics

Prob PCF with Partial Real Numbers (IpPCF) Using ω Qbs and Interval Integration Monad IT Correctness $\checkmark s \longrightarrow_n \oint \alpha$ implies $[\![s]\!] = \lambda f. \int_{\Lambda \vdash \sigma} [\![t]\!] f(\alpha_* \text{Leb})(dt)$ Adequacy $\sqrt{ [s]} = [t]$ implies $s \sim_{ctx} t$

Is ω **Qbs** a fully abstract model for IpPCF?

- 1. For any type σ , $[\sigma]$ is sharp. \checkmark
 - 1.1 $\omega \mathbf{Qbs}(X, Y)$ is bounded-complete, pointed and sharp, if X and Y are bounded-complete, pointed and sharp. \checkmark
 - 1.2 ITX is bounded-complete, pointed and sharp with basis $\{\bigsqcup_{i=1}^{''}\eta_i\mid \eta_i\in \oint B(\mathbb{I}\mathbb{R}\Rightarrow X_{\perp})\wedge n>0\}, \text{ if } X \text{ is sharp. } \checkmark$
- 2. Show that all basis elements of $\llbracket \sigma \rrbracket$ are definable.

Conjecture: If IpPCF is extended with parallel function symbols and supremum operator, then all basis elements of $\llbracket \sigma \rrbracket$ are definable.