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Abstract

The differential λ-calculus augments the λ-calculus with differential operators
that mimic the rules of the standard differential calculus. The extension, and
an equivalent calculus, the resource λ-calculus, give expression to resource usage
of a computation. Bucciarelli et al. have shown that cartesian closed differential
categories are models of simply-typed differential λ-theories. This project proves
the converse, which is a form of completeness: given a typed differential λ-theory,
we construct the “smallest” category in which one can soundly model the theory.
Moreover, we show that, under reasonable assumptions, differential λ-theory is the
internal language of cartesian closed differential category. Finally, we present the
relational model as a cartesian closed differential category and show that it is in-
complete.
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1 Introduction
λ-calculus is introduced by Church in [Chu41] as a foundation of mathematics which,
instead of focusing on sets, focuses on functions. It proves to be a consistent and elegant
logical system for computation. Indeed, many functional programming languages, e.g.
Haskell, OCaml and Lisp, are based heavily on λ-calculus. However, λ-calculus does not
provide explicit information on how much resource is required in evaluating a program,
since there is no restriction on the number of times an argument is being used in a func-
tion. In an environment where resource is limited, this is a problem. Ehrhard and Regnier
in [ER03] designed the differential λ-calculus which is an extension of λ-calculus and is
resource-sensitive in the sense that we would know exactly if arguments would actually
be used during the evaluation of the program. After studying models of linear logic where
the existence of differential operator naturally arises, they made a key observation that
the linear notion in logic (using arguments exactly once) coincides with the linear notion
in algebra, which is strongly suggestive in the terminology of linear logic suggested by
Girard in [Gir87]. They drew on these insights and presented this new calculus.

Differential λ-calculus Differential λ-calculus was introduced to explore differentia-
tion as a syntactic operation in λ-calculus by extending it with differential operators,
mimicking the rules of the algebraic differential calculus. It extends λ-calculus in two di-
rections. First they introduced a new restricted binary operation representing the deriva-
tive of a function along a point, called differential application and denoted as Ds ·t, which
has the intuitive meaning that s is provided with exactly one copy of t. With this new ap-
plication, the authors introduced a new corresponding differential substitution, denoted as
∂s

∂x
· t, which represents the result of substituting exactly one (non-deterministically cho-

sen) linear occurrences of x in s by t. Since differential substitution is non-deterministic,
if there are multiple linear occurrences of x in s, one has a choice of which linear occur-
rences of x to be substituted. In the light of this, the authors extended λ-terms in another
direction, introducing sums to the syntax. The introduction of sums allows differential
λ-calculus to be non-deterministic and yet confluent (Church-Rosser property).

This new differential λ-calculus is a breakthrough since we can now apply useful
theorems from differential calculus in the context of λ-calculus. For example, in [ER03;
ER08], the authors studied the Taylor expansion of a normal λ-term and showed that we
can “express a term as an infinite sum of purely differential terms all of which contain only
(multi)linear applications and applications to 0”, which is potentially useful in controlling
programs in an environment with limited resources.

Resource λ-calculus Ehrhard and Regnier were not the first to suggest a variant of
λ-calculus that is resource-sensitive. Early in 1993, Boudol drew inspirations from the
encoding of λ-calculus into π-calculus by Milner in [Mil92], and suggested λ-calculus
with multiplicities in [Bou93] which is resource-sensitive. Instead of having an additional
application, Boudol’s calculus refines λ-calculus by introducing a new type of argument in
an application sT , where T is not a term but a bag of resources, i.e. a multiset of terms each
with a multiplicity, denoted as T ≡ (Mm1

1 |Mm2
2 | . . . |Mmn

n ). The multiplicity of the term
indicates the number of available copies of the term in the reduction. One can construct
a normal λ-term by having a term with an infinite multiplicity. However, this refinement
requires lazy β-reduction and explicit substitution in the syntax in order to perform
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the non-deterministic choice during reduction. Therefore, it is not an extension from
λ-calculus and is different from differential λ-calculus. However after the introduction of
differential λ-calculus, Pagani and Tranquilli in [PT09] presented the resource λ-calculus
which is similar to Boudol’s calculus but “enriched with the dynamics of differential λ-
calculus”, as stated in [Tra11], and is translatable to and from differential λ-calculus as
shown in [BEM10; Man12].

Categorical model Lambek first discovered the relation between cartesian closed cat-
egories and simply-typed λ-calculus in [Lam80]. He showed that any model of a typed
λ-theory is a cartesian closed category and any cartesian closed category is a model of
some typed λ-theory. We describe this relationship by saying that typed λ-theory is
the internal language of cartesian closed category. After the introduction of differential
λ-calculus, it is natural to ask what kind of category has this differential λ-theory as its
internal language.

Drawing on the insights of defining differentiation in λ-calculus from [ER03], Blute,
Cockett and Seely in [BCS06] abstracted the notion of differentiation categorically and
introduced the differential category. In this category, linear maps are represented as mor-
phisms and the differentiable maps are represented as morphisms in its coKleisli category.
In the subsequent paper [BCS09], the same authors directly axiomatize the differentiable
maps, i.e. characterize the coKleisli structure of differential categories, and introduced the
cartesian differential category, which is a left additive category with finite products and
a cartesian differential operator that satisfies a set of more complicated conditions. In
this category, differentiable maps are represented as morphisms, which matches the intu-
itive meaning of differential λ-terms. However, since the cartesian differential operator of
cartesian differential category does not behave well with exponentials, one cannot model
differential λ-calculus in it.

Bucciarelli, Ehrhard and Manzonetto added a new condition for the cartesian differen-
tial operator in [BEM10] which ensures that the operator behaves well with exponentials
and proved that one can soundly model differential λ-theories in this category, which
they called cartesian closed differential category. It is known in the folklore that the com-
pleteness result is true, i.e. given a differential λ-theory, one can construct a classifying,
i.e. “smallest”, cartesian closed differential category such that this theory can be modelled
soundly in.

Contributions The highlight of this project is to prove this completeness theorem. We
first construct a category according to the syntax of the given differential λ-theory and
prove that it is indeed a cartesian closed differential category that soundly models the
theory. After that, we show that it is classifying by establishing an equivalence between
the category of cartesian closed differential functors and the category of differential mod-
els. Assuming that we can extend the theory with constants and function symbols, I
conclude that differential λ-theory is the internal language of cartesian closed differential
category. This result allows us to reason about cartesian closed differential category using
differential λ-theory. Finally, I discuss the notion of complete categories with respect to
differential λ-theories.

Outline The project is split into two parts: syntax and category. We first look at
the syntax of differential λ-calculus in section 2, and the syntax of resource λ-calculus
in section 3. Then, we conclude part one by looking at translation maps between the
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calculi in section 4. After presenting the syntax, section 5 describes the cartesian closed
differential category and presents the categorical interpretation of differential λ-calculus
in it. Following that, we prove the soundness and completeness theorem and show that
differential λ-theory is the internal language of cartesian closed differential category and
give some examples on how to prove properties of the category using the theory. Finally,
we discuss the notion of complete categories and show that the relational model, which
is a classic example of a carteisan closed differential category, is incomplete.

There are two appendices attached at the end of this project. Appendix A presents
the relationship between simply-typed λ-calculus and cartesian closed category, proving
both soundness and completeness results. This is meant for readers who are not familiar
with these results. Appendix B provides the proofs of some lemmas and propositions.
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2 Differential λ-Calculus
Differential λ-calculus is introduced by Ehrhard and Regnier in [ER03] as a λ-calculus
with a syntactic operation “differentiation” that mimics differential calculus.

2.1 Differential λ-Terms

Let’s look at the definition of differentiation in differential calculus. As defined in [Die60],
a function f : U → V on vector spaces is said to be differentiable at x ∈ U if there is a
linear function f ′(x) : U → V that best approximates the slope of f at x. Given u ∈ U ,
f ′(x) ·u can be read as the linear application of f ′(x) to u. So, the function x 7→ f ′(x) ·u
from U to V would be linear in u. We denote this function as Df · u : U → V and call
it the derivative of f along u.

Keeping this in mind, one can extend λ-terms by introducing a new construct that
mimics this derivative. Given two terms s and t, Ds · t is defined to be the differential
application of s to t, i.e. s is provided with exactly one copy of t. We can look at Ds · t
as the derivative of s along t. The reason for including sums in this calculus will become
apparent when we move onto the definition of differential substitution.

The syntax stated here is borrowed from [Vau07].

Definition 2.1 (Differential λ-Terms). Assume we have an infinitely countable set of
variables V . The collection Λd of differential λ-terms and the collection Λs of simple
terms are defined by mutual induction as follows:

Λs : s, t, u, v ::= x | λx.s | s T | Ds · t | 〈〉 | 〈s, t〉 | Fst(s) | Snd(s)

Λd : S, T, U, V ::= 0 | s | s+ T

where x ∈ V .

We consider differential λ-terms up to α-conversion, and up to associativity and com-
mutativity of the sum. We write S ≡ T if S and T are syntactically equivalent. The
term 0 is the unit element of the sum, thus S + 0 ≡ S ≡ 0 + S. The set FV(S) of free
variables of S and the capture-free substitution of x by T in S, denoted by S[T/x], are
defined as usual.

Let us explore more on the linearity of differential λ-calculus. Adopting the notion of
linear from linear logic, we say that a subterm of a term s is in a linear position if the
subterm is used exactly once in the reduction of s. To be more precise, we say that

• x is in a linear position in variable x;

• s is in a linear position in the abstraction λx.s;

• s is in a linear position in the application s T ;

• s and t are both in a linear position in the differential application Ds · t;

• s and t are both in a linear position in the pair 〈s, t〉;

• s and T are both in a linear position in the sum s+ T .

In contrast to differential application, the normal application is linear in the function but
not in the argument. This makes sense as there is no restriction on the number of times
the argument is being used in the function in a normal application.
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Example 2.1. Consider the subterms of the differential λ-term S ≡ λy.
(
(Dx ·y) (x+y)

)
.

• x and y are both in a linear position in Dx · y and x+ y,

• Dx · y is in a linear position in the application (Dx · y) (x+ y), but x+ y is not,

• (Dx · y) (x+ y) is in a linear position in the abstraction λy.
(
(Dx · y) (x+ y)

)
.

So, x + y is the only subterm of S that is not in a linear position in any subterm of S.
However, x and y are in a linear position in x+ y.

To clarify the coincidence of the two notions of linearity, consider the space of differ-
entiable functions from U to V . For any differentiable functions f, g : U → V , the sum
of the two functions is defined to be (f + g)(u) = f(u) + g(u) for any u ∈ U . Moreover,
we also have D(f + g) · u = Df · u + Dg · u and Df · (u + v) = Df · u + Df · v for any
u, v ∈ U . If we consider terms as differentiable functions, then we have

(s+ t)u = su+ tu D(s+ t) · u = Ds · u+ Dt · u
λx.(s+ t) = λx.s+ λx.t Ds · (u+ v) = Ds · u+ Ds · v

In the light of this, we have the following abbreviations.

Notation 2.1. Note that sums are only allowed in the argument of an application, so
the definition given above does not allow the followings as terms, but we will find the
following syntactic sugars useful.

λx.
( n∑
i=1

si

)
≡

n∑
i=1

λx.si D
( n∑
i=1

si

)
·
( m∑
j=1

ti

)
≡

n,m∑
i=1,j=1

Dsi · tj

( n∑
i=1

si

)
T ≡

n∑
i=1

si T
〈 n∑

i=1

si,
m∑
j=1

tj

〉
≡ 〈s1, t1〉+

〈 n∑
i=2

si,
m∑
j=2

tj

〉
The definition of differential λ-terms allow the argument of an application to be a

sum of terms. Since it is not in a linear position, in general,

s
( n∑
i=1

Ti

)
6≡

n∑
i=1

s Ti.

Note that if we sum over 0 terms, 0 annihilates all things except when it is the
argument of an application.

2.2 Differential Substitution

After introducing differential application which mimics the derivativeDf ·u : x 7→ f ′(x)·u,
the authors introduced another operation which mimics the result of applying f ′(x) to
u linearly. This operation is similar to substitution, and is given the name differential

substitution, denoted as
∂S

∂x
· T . It replaces exactly one linear occurrences of x (non-

deterministically chosen) by T in S.
Consider the situation where there are multiple linear occurrences of a variable in a

term. To perform differential substitution, one has a choice of which linear occurrences
of the variable to be substituted. So, this substitution becomes a non-deterministic
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operation. The authors of [ER03] use sums to interpret this non-deterministic property.

Thus, differential substitution
∂S

∂x
· T is actually the sum of all possible terms obtained

by substituting exactly one linear occurrences of the variable x by T in the term S.
Furthermore, if there is no such occurrence in S, the result will be 0.

Definition 2.2 (Differential substitution). Let S, T be differential λ-terms and x be a

variable. The differential substitution of x by T in S, denoted by
∂S

∂x
· T , is defined by

induction on S as follows:
∂y

∂x
· T ≡

{
T if x ≡ y,
0 otherwise.

∂

∂x
(λy.s) · T ≡ λy.

(∂s
∂x
· T
)

assuming x 6≡ y and y /∈ FV(T )

∂

∂x
(sU) · T ≡

(∂s
∂x
· T
)
U +

(
Ds ·

(∂U
∂x
· T
))

U

∂

∂x
(Ds · u) · T ≡ D

(∂s
∂x
· T
)
· u+ Ds ·

(∂u
∂x
· T
)

∂

∂x
〈〉 · T ≡ 〈〉

∂

∂x
〈s, u〉 · T ≡

〈∂s
∂x
· T, ∂u

∂x
· T
〉

∂

∂x
Fst(s) · T ≡ Fst

(∂s
∂x
· T
)

∂

∂x
Snd(s) · T ≡ Snd

(∂s
∂x
· T
)

∂0

∂x
· T ≡ 0

∂

∂x
(s+ U) · T ≡ ∂s

∂x
· T +

∂U

∂x
· T

Since differential application is a bilinear operator, a linear occurrence of x in Ds · t is
either a linear occurrence in s or t, so we can just sum over both possibilities and obtain

D
(∂s
∂x
· T
)
· u+ Ds ·

(∂u
∂x
· T
)
.

However, this is not the case for normal application sU . If the linear occurrence of x is
in s, we can apply the substitution directly to s as it is in a linear position, producing

the term
(∂s
∂x
· T
)
U . However, if the linear occurrence of x is in U , we would need to

“linearise” the application by “extracting” a linear copy of U , obtaining (Ds · U)U , and
perform the substitution to the linear copy.

sU
extracting a

linear copy of U
// (Ds · U)U substitution on

the linear copy
//

(
Ds ·

(∂U
∂x
· T
))

U

Again this coincides with the algebraic notion of differentiating a composition of two
functions.

(f ◦ g)′(x) = f ′
(
g(x)

)
· g′(x) =

(
Df · g′(x)

)
g(x)

Note that “linearising” applications is not valid in this calculus. i.e. sU 6≡ (Ds · U)U .
It is only used implicitly in the differential substitution of application.
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Example 2.2. Let x, y and z be distinct variables. Consider the differential substitution
of x by z in the term S ≡ λy.

(
(Dx · y) (x+ y)

)
.

∂

∂x

(
λy.
(
(Dx · y) (x+ y)

))
· z

≡ λy.
(∂ (Dx · y) (x+ y)

∂x
· z
)

≡ λy.

((∂ Dx · y
∂x

· z
)

(x+ y) +
(
D(Dx · y) ·

(∂(x+ y)

∂x
· z
))

(x+ y)

)
≡ λy.

((
D
(∂x
∂x
· z
)
· y + Dx ·

(∂y
∂x
· z
))

(x+ y)+(
D(Dx · y) ·

(∂x
∂x
· z +

∂y

∂x
· z
))

(x+ y)

)
≡ λy.

(
(Dz · y + Dx · 0) (x+ y) +

(
D(Dx · y) · (z + 0)

)
(x+ y)

)
≡ λy.

(
(Dz · y) (x+ y)

)
+ λy.

((
D(Dx · y) · z

)
(x+ y)

)
As discussed in example 2.1, the only subterm that is not in a linear position of any other
subterm of S is x+y. Yet, x is a linear occurrence in x+y. In the differential substitution
∂S

∂x
· z, we consider all possible terms obtained by substituting one linear occurrences of

the variable x by z in the term S. Hence, we also substitute this linear occurrence of x
in x+ y and obtain λy.

((
D(Dx · y) · z

)
(x+ y)

)
.

The following proposition tells us that if there is no free occurrences of x in a term
S, the result of differential substituting x in S is 0.

Proposition 2.1. If x /∈ FV(S), then
∂S

∂x
· T ≡ 0.

Proof. Easy induction on the structure of S.

We have established enough machinery to define differentiation in this calculus. Recall
the algebraic notion of differentiation. The derivative of a function f along u is the
function

Df · u : x 7−→ f ′(x) · u.
In this calculus, we reduce the derivative of a function, i.e. an abstraction λx.s, along a
term t to another abstraction similar to λx.s, λx.s′, where s′ is the term where exactly
one linear occurrence of x (non-deterministically chosen) is substituted by t. i.e.

D(λx.s) · t −→ λx.
(∂s
∂x
· t
)

Example 2.3. Consider the differential application of λx.xz(yz) to w.

D
(
λx.xz(yz)

)
· w −→ λx.

(∂ xz(yz)

∂x
· w
)

≡ λx.
((∂xz

∂x
· w
)

(yz) +
(
Dxz · (∂yz

∂x
· w)

)
(yz)

)
≡ λx.

(((∂x
∂x
· w
)
z +

(
Dx · (∂z

∂x
· w)

)
z
)

(yz) + 0
)

≡ λx.
(
(wz + 0) (yz)

)
≡ λx.wz(yz)
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There is only one linear occurrence of x in s and it is substituted by w. Note that the
result of the differential substitution remains an abstraction and, in this case, that is the
only difference between the reduction of the differential application D

(
λx.xz(yz)

)
·w and

the classical application
(
λx.xz(yz)

)
w, where(

λx.xz(yz)
)
w −→ wz(yz).

Let us consider the differential application of λx.xx to y.

D(λx.xx) · y −→ λx.
(∂xx
∂x
· y
)

≡ λx.
((∂x
∂x
· y
)
x+

(
Dx ·

(∂x
∂x
· y
))
x
)

≡ λx.
(
yx+ (Dx · y) x

)
Note that in λx.xx, x occurs twice and the reduction only allows exactly one linear
occurrences of x being substituted.

2.3 Type System D
Definition 2.3 (Type System D). Assume we have a collection of type variables TV.
Types and type contexts are defined as follows:

Types α, β ::= unit | γ | α× β | α⇒ β where γ ∈ TV

Type Contexts Γ,∆ ::= ∅ | Γ ∪ {x : α} assuming that {x : α} 6∈ Γ

A differential λ-term s is a differential typed term if there is a type context Γ and a type
α such that Γ `D s : α is derivable in the type system D defined by the following rules,

(var)
Γ ∪ {x : α} `D x : α

Γ ∪ {x : α} `D s : β
(abs)

Γ `D λx.s : α⇒ β

Γ `D s : α⇒ β Γ `D t : α
(app)

Γ `D s t : β

(unit)
Γ `D 〈〉 : unit

Γ `D s : α Γ `D t : β
(pair)

Γ `D 〈s, t〉 : α× β

Γ `D p : α× β
(Fst)

Γ `D Fst(p) : α

Γ `D p : α× β
(Snd)

Γ `D Snd(p) : β

Γ `D s : α⇒ β Γ `D t : α(D)
Γ `D Ds · t : α⇒ β

Γ `D si : α ∀i ∈ I(sum)
Γ `D

∑
i∈I si : α

Remark. The differential application Ds · t has the same function type α ⇒ β as s as it
is mimicking the derivative of s along t.
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Example 2.4. Let Γ = {x :α, y :α, z :α} and Γ′ = {y :α, z :α}. We show that the term
D
(
D(λx.x) · y

)
· z is a differential typed term.

(var)
Γ `D x : α(abs)

Γ′ `D λx.x : α⇒ α
(var)

Γ′ `D y : α(D)
Γ′ `D D(λx.x) · y : α⇒ α

(var)
Γ′ `D z : α

(D)
Γ′ `D D

(
D(λx.x) · y

)
· z : α⇒ α

Lemma 2.2 (Substitution Lemma for D). Let Γ∪ {x : α} `D S : β and Γ `D T : α. We
have

(i) Γ `D S[T/x] : β

(ii) Γ ∪ {x : α} `D
∂S

∂x
· T : β

Proof. Easy induction on structure of S.

2.4 Differential λ-theory

Definition 2.4. A simply-typed theory T with respect to a type system T is a collection
of rules of the form Γ `T s = t : α, where Γ `T s : α and Γ `T t : α are derivable. We
write T BΓ `T s = t : α to indicate that Γ `T s = t : α is a rule in T . The λβηD-theory
is the smallest theory that is closed under the following rules,

Γ `D s = s′ : α⇒ β Γ `D t = t′ : α(app)
Γ `D st = s′ t′ : β

Γ ∪ {x : α} `D s = t : β
(abs)

Γ `D λx.s = λx.t : α⇒ β

Γ ∪ {x : α} `D s : β Γ `D t : α
(β)

Γ `D (λx.s) t = s [t/x] : β

x 6∈ FV(s)
(η)

Γ `D λx.s x = s : α⇒ β

Γ `D s : unit(unit)
Γ `D s = 〈〉 : unit

Γ `D p : α× β(pair)
Γ `D 〈Fst(p), Snd(p)〉 = p : α× β

Γ `D s : α Γ `D t : β(Fst)
Γ `D Fst(〈s, t〉) = s : α

Γ `D s : α Γ `D t : β(Snd)
Γ `D Snd(〈s, t〉) = t : β

Γ `D s = t : α⇒ β Γ `D u = v : α(appD) Γ `D Ds · u = Dt · v : α⇒ β

Γ `D D(λx.s) · t : α⇒ β
(βD)

Γ `D D(λx.s) · t = λx.
(∂s
∂x
· t
)

: α⇒ β

(swD)
Γ `D D (Ds · t) · u = D (Ds · u) · t : α

Γ `D si = ti : α ∀i ∈ I(sum)
Γ `D

∑
i∈I si =

∑
i∈I ti : α

11



with the usual reflexive, symmetric and transitivity rules.
We say a simply-typed theory T is a differential λ-theory if it is closed under all rules

in λβηD.

Remark. Since we are only considering simply-typed theories in this project, we write
theory meaning simply-typed theory.

The following lemma is a direct consequence of the (swD) rule. It shows that differ-
ential substitution of the same variable is unordered.

Lemma 2.3. If x /∈ FV(T ) ∪ FV(U), then
∂

∂x

(∂S
∂x
· T
)
· U ≡ ∂

∂x

(∂S
∂x
· U
)
· T .

Proof. Easy induction on the structure of S.

Notation 2.2. Writing ~t ≡ t1, . . . ,tk, we have the following syntactic sugars

Dks ·~t ≡ D(. . . (D(Ds · t1) · t2) . . . ) · tk
∂ks

∂xk
·~t ≡ ∂

∂x

(
. . .
( ∂
∂x

(∂s
∂x
· t1
)
· t2
)
. . .
)
· tk.

Let ~̂t be a permutation of ~t and T be a differential λ-theory. By the (swD) rule, we have

T B Γ `D Dks · ~̂t = Dks · ~t : α.

And, by Lemma 2.3, if x 6∈ FV(s) ∪
⋃k
i=1 FV(ti), then

T B Γ `D
∂ks

∂xk
· ~̂t =

∂ks

∂xk
· ~t : α.

Moreover by the (βD) rule, we know that

T B Γ `D Dk(λx.s) · ~t = λx.
(∂ks
∂xk
· ~t
)

: α.

Example 2.5. In example 2.4, we showed that Γ′ `D D
(
D(λx.x) · y

)
· z : α⇒ α. In any

differential λ-theory T , we can write D
(
D(λx.x) · y

)
· z as D2(λx.x) · (y,z), and have

T B Γ′ `D D2(λx.x) · (y,z) = λx.
(∂2x

∂x2
· (y,z)

)
≡ 0 : α⇒ α.

12



3 Resource λ-Calculus
Resource λ-calculus is suggested by Pagani and Tranquilli in [PT09] and refined by Buc-
ciarelli et al. in [BEM10], which is based on Boudol’s calculus [Bou93] but “enriched with
the dynamics of differential λ-calculus”.

Resource λ-calculus has a bag of resources as the arguments in an application, where
a resource is either a reusable term, with a ! superscript, or a linear term. As the names
suggest, a reusable term is a term that is infinitely available, and a linear term provides
exactly one copy of itself. Note that this way of indicating a reusable term comes from
Girard’s linear logic in [Gir87]. In the light of differential λ-calculus, sums are introduced
to this calculus to represent all the possible results of a computation. In addition to the
capture-free substitution, resource substitution is also added. Moreover, reductions are
not lazy as in Boudol’s calculus. All these make it possible to define translations between
this calculus and differential λ-calculus.

3.1 Resource Terms and Bags of Resources

Recall 3.1 (Multisets). A multiset m over a set S is an unordered list with repetitions,
denoted as m = [a1, a2, . . . ], where ai ∈ S for all i. We say m is finite if it is a finite
list. The union of multisets m1 = [a1, a2, . . . ] and m2 = [b1, b2, . . . ] is m1 ] m2 =
[a1, b1, a2, b2, . . . ]. We write N (S) as the set of all finite multisets over S. We denote 1
as the empty multiset [ ].

Example 3.1. (i) [1, 1, 2] ] [2, 3] = [1, 1, 2, 2, 3]

(ii) N (ω) = {[n1, n2, . . . , nm] : m ≥ 0, ni ∈ ω}

Definition 3.1 (Resource Terms and Bags). Assume we have an infinitely countable set
of variables V . The collection Λr of resource terms, the collection Λ(!) of resources and
the collection Λb of bags are defined by mutual induction as follows, where x ∈ V :

Λr : M,N,L ::= x | λx.M | M P | 〈〉 | 〈M,N〉 | Fst(M) | Snd(M) (terms)
Λ(!) : M (!),N (!) ::= M | M ! (resources)
Λb : P,Q,R ::= 1 | P ] [M (!)] (bags)
Λe : A,B,C ::= M | P (expressions)

The collection Λe of expressions is just the (disjoint) union of the collection Λr and Λb.

Definition 3.2 (Sums). The collection of sums of terms is the set of all finite multisets
over Λr, N (Λr) and the collection of sums of bags is the set of all finite multisets over
Λb, N (Λb), with 0 referring to the empty sum.

M,N,L ∈ N (Λr) (sums of terms)
P,Q,R ∈ N (Λb) (sums of bags)
A,B,C ∈ N (Λr) ∪N (Λb) (sums of expressions)

We consider expressions up to α-conversion and write A ≡ B if A and B are syntac-
tically equivalent. The set FV(A) of free variables of A and the capture-free substitution
of x by a resource term N in an expression A, denoted by A[N/x], are defined as usual.
It is easy to see that we can extend both the free variable and substitution to sums as in
FV(A) and A[N/x] by linearity in A.

13



Example 3.2. Similar to Boudol’s calculus, we can express any λ-terms using resource
terms. For example,

I ≡ λx.x ω ≡ λx.x [x!] Ω ≡ ω [ω!] ∆ ≡ λxy.x[(x [x!, y!])!] Θ ≡∆ [∆!]

Notation 3.1. The definitions for terms and bags do not include any sums. Thus, the
sums are always on the “surface”. Nonetheless, we would define the following syntactic
sugars where we extend all constructors to the sums. All “positions” in resource λ-
calculus are linear, except (−)!. So, unlike in differential λ-calculus, application is a
bilinear operator in resource λ-calculus. This makes sense since sums only arise on the
“surface” in resource λ-calculus, while the argument of an application in differential λ-
calculus could be a sum.

λx.
( n∑
i=1

Mi

)
≡

n∑
i=1

λx.Mi

[ n∑
i=1

Mi

]
] P ≡

n∑
i=1

(
[Mi] ] P

)
( n∑
i=1

Mi

)( m∑
j=1

Pj

)
≡

n∑
i=1

m∑
j=1

(MiPj)
[( n∑

i=1

Mi

)!
]
] P ≡ [M !

1, . . . ,M
!
n] ] P

Note that if we sum over 0 expressions, 0 annihilates all things except under (−)!.

3.2 Resource Substitution

Definition 3.3 (Resource Substitution). Let A be an expression, N be a resource term
and x be a variable. The resource substitution, denoted as A〈N/x〉, is defined by induction
on A as follows:

y〈N/x〉 ≡
{
N if x ≡ y,
0 otherwise.

(λy.M)〈N/x〉 ≡ λy.(M〈N/x〉) assuming that x 6≡ y, y /∈ FV(N)

M P 〈N/x〉 ≡M〈N/x〉P +M P 〈N/x〉
〈〉〈N/x〉 ≡ 〈〉

〈M,L〉〈N/x〉 ≡ 〈M〈N/x〉, L〈N/x〉〉
Fst(M)〈N/x〉 ≡ Fst(M〈N/x〉)
Snd(M)〈N/x〉 ≡ Snd(M〈N/x〉)

[M ]〈N/x〉 ≡ [M〈N/x〉]
[M !]〈N/x〉 ≡ [M〈N/x〉,M !]

1〈N/x〉 ≡ 0

(P ]R)〈N/x〉 ≡ P 〈N/x〉 ]R + P ]R〈N/x〉

Similar to capture-free substitution, resource substitution can be extended to sums as in
A〈N/x〉 by bilinearity in A and N.

In differential substitution, we discussed how to linearly substitute a linear occurrence
of x to the argument of an application, which is not in a linear position. However,
in resource λ-calculus, this is not necessary as application is bilinear. We can safely
distributes the substitution over application. The only operator that is not linear in
resource λ-calculus is (−)!. Thus, for [M !]〈N/x〉, we again “extract” a linear copy from

14



the reusable resource M !, apply the resource substitution to the linear copy, leaving the
reusable copy unchanged and obtain [M〈N/x〉,M !]. This equation(

s [U !]
)
〈T/x〉 ≡

(
s〈T/x〉

)
[U !] + s

(
[U !]〈T/x〉

)
≡
(
s〈T/x〉

)
[U !] + s [U〈T/x〉, U !]

closely resembles the differential substitution of application.

Example 3.3. Consider the following resource substitution.(
λy.(x [y, (x+ y)!])

)
〈z/x〉

≡ λy.
(
(x [y, (x+ y)!])〈z/x〉

)
≡ λy.

(
(x〈z/x〉

)
[y, (x+ y)!] + x ([y, (x+ y)!]〈z/x〉)

)
≡ λy.

(
z [y, (x+ y)!] + x ([y〈z/x〉, (x+ y)!] + [y, (x+ y)〈z/x〉, (x+ y)!])

)
≡ λy.

(
z [y, (x+ y)!] + x ([0, (x+ y)!] + [y, z + 0, (x+ y)!])

)
≡ λy.

(
z [y, (x+ y)!]

)
+ λy.

(
x [y, z, (x+ y)!]

)
Note that in example 2.2, we have

∂

∂x

(
λy.
(
(Dx · y) (x+ y)

))
· z ≡ λy.

(
(Dz · y) (x+ y)

)
+ λy.

((
D(Dx · y) · z

)
(x+ y)

)
which closely resembles our result here.

3.3 Type System R
Definition 3.4 (Type System R). A sum of expression A is a resource typed term if
there is a type context Γ and a type α such that Γ `R A : α is derivable in the type
system R defined by the following rules,

Γ `R N : α Γ `R P : α(bag)
Γ `R [N (!)] ] P : α

(1)
Γ `R 1 : α

Γ `R A : α Γ `R B : α B 6= 0(sum)
Γ `R A+ B : α

and the usual (var), (abs), (app), (unit), (pair), (Fst) and (Snd) rules.

3.4 Resource λ-theory

Notation 3.2. We will have the following abbreviations,

~L ≡ L1, . . . , Ln M [ ~N !/x] ≡M [N !
1/x] . . . [N !

k/x]
~N ! ≡ N !

1, . . . , N
!
k M〈~L/x〉 ≡M〈L1/x〉 . . . 〈Ln/x〉

We also write ~L−j ≡ L1, . . . , Lj−1, Lj+1, . . . , Ln.
Every application MP can be written uniquely as M [~L, ~N !], where P ≡ [~L, ~N !] is a

multiset which is unordered.
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Definition 3.5. The λβηR-theory is the smallest theory that is closed under the following
rules,

Γ ∪ {x : α} `R M : β Γ `R [~L, ~N !] : α
(βR)

Γ `R (λx.M) [~L, ~N !] = M 〈~L/x〉 [
∑

iNi/x] : β

Γ `R M : α x 6∈ FV(M)
(ηR)

Γ `R λx.M [x!] = M : α

Γ `R Mi = Ni : α ∀i ∈ I(sum)
Γ `R

∑
i∈IMi =

∑
i∈I Ni : α

Γ `R M = N : α Γ `R P = Q : α(bag)
Γ `R [M (!)] ] P = [N (!)] ]Q : α

with the usual reflexive, symmetric, transitivity, (app), (abs), (unit), (pair), (Fst) and
(Snd) rules. We say a theory T is a resource λ-theory if it is closed under all the rules
in λβηR.

Remark. In the (βR) rule, if we only have linear resources in the bag, we would have

Γ ∪ {x : α} `R M : β Γ `R [~L] : α
(βR)

Γ `R (λx.M)[~L] = M〈~L/x〉[0/x] : β

If there is no reusable resources in a bag, this (βR) rule substitutes every free occurrences
of x by 0 after the resource substitution.

Example 3.4. In resource λ-theories, (λx.x) [y] is equated to a variable

(λx.x) [y] = x 〈y/x〉[0/x] ≡ y [0/x] ≡ y,

whereas in differential λ-theories, the differential application D(λx.x) · y is equated to an
abstraction

D(λx.x) · y = λx.(
∂x

∂x
· y) ≡ λx.y.
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4 Translation Between Differential λ-Calculus and Re-
source λ-Calculus

As mentioned in the previous section, resource λ-calculus suggested in [PT09] is inspired
by the dynamic of differential λ-calculus. It is not surprising that these two calculi are
closely related.

Along with introducing the categorical models for simply-typed differential λ-calculus,
Bucciarelli et al. in [BEM10] defined a “faithful” translation map from resource λ-calculus
to differential λ-calculus. In a subsequent paper [Man12], Manzonetto refined the trans-
lation map and provided the backward direction.

4.1 From Resource λ-Calculus to Differential λ-Calculus

Resource terms can be easily translated to differential λ-terms.

(−)d : Λr −→ Λd

x 7−→ x

λx.M 7−→ λx.Md

M [~L, ~N !] 7−→ (DkMd · ~Ld)
∑
i

Nd
i

〈〉 7−→ 〈〉
〈M,N〉 7−→ 〈Md, Nd〉
Fst(M) 7−→ Fst(Md)

Snd(M) 7−→ Snd(Md)

Remark. This translation can be extended to the sums of term by
(∑

iMi

)d
=
∑

iM
d
i .

Note that (−)d is a partial function. Consider the equivalent resource terms x [y, z]
and x [z, y].

(x [y, z])d ≡ D(Dx · y) · z (x [z, y])d ≡ D(Dx · z) · y.

In differential λ-calculus, D(Dx · y) · z and D(Dx · z) · y are not syntactically equivalent.
However, according to the (swD) rule, they are equal under any differential λ-theory.

Example 4.1. The resource term in example 3.3 can be translated to the differential
term we considered in example 2.2 via (−)d.(

λy.(x [y, (x+ y)!])
)d ≡ λy.(x [y, (x+ y)!])d

≡ λy.
(
(Dxd · yd) (x+ y)d

)
≡ λy.

(
(Dx · y) (x+ y)

)
The following lemma and proposition show that (−)d behaves well with the substi-

tutions, the typing systems and the theories. The full proofs can be found in Appendix
B.

Lemma 4.1. Let M,N ∈ Λr and x be a variable.

(i) (M [N/x])d ≡Md[Nd/x]
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(ii) (M〈N/x〉)d ≡ ∂Md

∂x
·Nd

Proposition 4.2. For any M,N ∈ Λr, we have

(i) Γ `R M : α ⇐⇒ Γ `D Md : α,

(ii) If M and N are provably equal in the theory λβηR, then their translations are also
provably equal in λβηD. i.e.

λβηR B Γ `R M = N : α =⇒ λβηD B Γ `D Md = Nd : α.

4.2 The Converse - from Differential λ-Calculus to Resource λ-
Calculus

This direction is more tricky. As discussed in example 3.4, in resource λ-theories, if there
is no reusable resources in the bag, the (βR) rule substitutes all free occurrences of x by
0 after the resource substitution. Whereas in differential λ-theories, the abstraction is
kept.

Consider the following translation map from differential λ-terms to resource λ-terms.

(−)r : Λd −→ Λr

x 7−→ x

λx.s 7−→ λx.sr

sT 7−→ sr [(T r)!]

Ds · t 7−→ λy.
(
sr [tr, y!]

)
where y is a fresh variable

〈〉 7−→ 〈〉
〈s, t〉 7−→ 〈sr, tr〉
Fst(s) 7−→ Fst(sr)

Snd(s) 7−→ Snd(sr)

s+ T 7−→ sr + T r

Example 4.2. In contrast to example 4.1, we show that the differential term we consider
in example 2.2 can not be translated to the resource term in example 3.3 via (−)r.(

λy.
(
(Dx · y) (x+ y)

))r
≡ λy.

(
(Dx · y) (x+ y)

)r
≡ λy.

(
(Dx · y)r [

(
(x+ y)r

)!
]

≡ λy.
((
λz.(x [y, z!])

)
[(x+ y)!]

)
6≡ λy.(x [y, (x+ y)!])

Similar to (−)d, the translation (−)r behaves well with the substitutions, typing sys-
tems and the theories. The proofs of the following lemma and proposition can be found
in Appendix B.

Lemma 4.3. Let S, T ∈ Λd and x a variable.
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(i) λβηR B Γ `R
(
S[T/x]

)r
= Sr[T r/x] : α

(ii) λβηR B Γ `R
(∂S
∂x
· T
)r

= Sr〈T r/x〉 : α

Proposition 4.4. For any s, t ∈ Λd, we have

(i) Γ `D s : α ⇐⇒ Γ `R sr : α,

(ii) If s and t are provably equal in the theory λβηD, then their translations are also
provably equal in λβηR. i.e.

λβηD B Γ `D s = t : α =⇒ λβηR B Γ `R sr = tr : α.

4.3 Resource λ-Calculus and Differential λ-Calculus

As shown in example 4.2, the translations (−)d and (−)r are not inverse of each other,
yet we will see that they are close enough.

Proposition 4.5. For any differential typed term S ∈ Λd and resource typed term
M ∈ N (Λr),

λβηD B Γ `D (Sr)d = S : α and λβηR B Γ `R (Md)r = M : α.

Proof. We first prove that λβηD B Γ `D (Sr)d = S : α for all differential typed terms
S ∈ Λd by induction on the structure of S. The only interesting cases are when

• S ≡ sU is an application,

λβηD B
(
(sU)r

)d ≡ (sr [(U r)!])d ≡ (sr)d (U r)d = sU : α.

• S ≡ Ds · t is a differential application,

λβηD B Γ `D
(
(Ds · t)r

)d ≡ (λy.(sr [tr, y!])
)d

≡ λy.
(
(D(sr)d · (tr)d) yd

)
≡ λy.

(
(Ds · t) y

)
(IH)

= Ds · t : α (η)

Now, we consider sums of resource typed terms M ∈ N (Λr). We prove that Γ `R(
(M)d

)r
= M by induction on the structure of M. The only interesting case is when

M ≡M [~L, ~N !] is an application.

λβηR B Γ `R
(
(M [~L, ~N !])d

)r ≡ ((DkMd · ~Ld)
∑

Nd
i

)r
≡ (DkMd · ~Ld)r [

(∑
(Nd

i )r
)!

]

≡
(
λy.((Md)r [(~Ld)r, y!])

)
[
(
( ~Nd)r

)!
] (3.1)

=
(
λy.(M [~L, y!])

)
[ ~N !] (IH)

= M [~L, ~N !] : α (ηR)

This relationship between differential and resource λ-theories confirm the initial idea
that differential λ-calculus is resource-sensitive.
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5 Model of Differential λ-Calculus
In this section, we describe the cartesian closed differential category presented by Buc-
ciarelli et al. in [BEM10]. It is based on the cartesian differential category introduced by
Blute et al. in [BCS09]. Next, we prove that one can soundly model differential λ-theories
in cartesian closed differential category as shown in [BEM10]. After that, we prove the
converse by giving a construction of the “smallest” cartesian closed differential category
that can soundly model any given differential λ-theory.

Furthermore, assuming that we can extend the theory with constants and function
symbols, we show that differential λ-theory is the internal language of cartesian closed
differential category and “prove” properties about the category using the theory. Finally,
we discuss the notion of complete categories with respect to differential λ-theories.

5.1 Cartesian Differential Category

In differential category, morphisms are viewed as linear functions and coKleisli morphisms
as differentiable functions. Cartesian differential category resembles the coKleisli category
of a differential category and directly axiomatizes the differentiable functions.

Definition 5.1 (Left additive and Additive). A category C is left additive if every homset
C(A,B) is enriched with a commutative monoid (C(A,B),+AB, 0AB) and, the additive
structure is preserved by composition on the left. i.e.

(g + h) ◦ f = g ◦ f + h ◦ f 0 ◦ f = 0.

We say a morphism f in a left additive category is additive if it also preserves the additive
structure of the homset on the right. i.e.

f ◦ (g + h) = f ◦ g + f ◦ h f ◦ 0 = 0.

Example 5.1. Consider the category FVect of finite dimensional vector spaces and dif-
ferentiable functions. For any differentiable functions g, h : U → V , we can define a
differentiable function g + h : U → V , which sends u 7→ g(u) + h(u), where for any
differentiable function f : W → U ,

∀w ∈ W ((g + h) ◦ f)(w) = (g + h)(f(w)) = g(f(w)) + h(f(w)) = (g ◦ f + h ◦ f)(w)

Moreover, the zero function 0UV : u 7→ 0 is preserved by composition on the left. Thus,
FVect is left additive. However, not every differentiable functions in FVect is additive.
For instance, (x2 ◦ (x + 2x))(1) = x2(1 + 2) = 32 = 9, but (x2 ◦ x + x2 ◦ (2x))(1) =
x2(1) + x2(2) = 12 + 22 = 5.

Definition 5.2 (Cartesian left additive category). A cartesian left additive category is a
left additive category with products where projections and pairings of additive maps are
additive. i.e.

• π1 and π2 are additive,

• if f and g are additive, their pairing 〈f, g〉 is also additive.

Example 5.2. In FVect, it is easy to check that the projections p1 : (u, v) 7→ u and
p2 : (u, v) 7→ v are additive. Also, given additive differentiable functions f and g, their
pairing 〈f, g〉 : v 7→ (f(v), g(v)) is also additive. Thus, FVect is a cartesian left additive
category.
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As discussed before, the derivative of a function f : U → V along a point u ∈ U is
the function Df · u : U → V which maps x 7→ f ′(x) · u. Consider the situation where
we abstract u ∈ U as well. Then, we obtain a function from U to the space of linear
functions U ⇒ V , which we denote as

Df : U −→ (U ⇒ V )

u 7−→ Df · u

Note that Df is also differentiable. Now, we consider such a map in a cartesian left
additive category. Given a morphism f : A → B, we define a cartesian differential
operator D×[f ] which has the type A → (A ⇒ B). Since the cartesian left additive
category is not necessarily closed, we “uncurry” the morphism and obtainD×[f ] : A×A→
B.

Definition 5.3 (Cartesian differential operator). An operator D×[−] : C(A,B)→ C(A×
A,B) of a cartesian left additive category is a cartesian differential operator if it satisfies
the following axioms:

[CD1] D× is linear:

D×[f + g] = D×[f ] +D×[g], D×[0] = 0

[CD2] D× is additive in its first coordinate:

D×[f ] ◦ 〈h+ k, v〉 = D×[f ] ◦ 〈h, v〉+D×[f ] ◦ 〈k, v〉, D×[f ] ◦ 〈0, v〉 = 0

[CD3] D× behaves with projections:

D×[Id] = π1, D×[π1] = π1 ◦ π1, D×[π2] = π2 ◦ π1

[CD4] D× behaves with pairings:

D×[〈f, g〉] = 〈D×[f ], D×[g]〉

[CD5] Chain rule:
D×[g ◦ f ] = D×[g] ◦ 〈D×[f ], f ◦ π2〉

[CD6] D×[f ] is linear in its first component:

D×[D×[f ]] ◦ 〈〈g, 0〉, 〈h, k〉〉 = D×[f ] ◦ 〈g, k〉

[CD7] Independence of order of partial differentiation:

D×[D×[f ]] ◦ 〈〈0, h〉, 〈g, k〉〉 = D×[D×[f ]] ◦ 〈〈0, g〉, 〈h, k〉〉

We say D×[f ] : A× A→ B is the derivative of f : A→ B.

Definition 5.4 (Cartesian differential category). A cartesian left additive category with
a cartesian differential operator is a cartesian differential category.
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Example 5.3. We can define a cartesian differential operator in FVect as follows,

D×[~f ](~x, ~y) =

[
∂fj
∂xi

∣∣∣∣
~y

]m,n
i=1, j=1

~x

where ~f = (f1, . . . , fn), ~x = (x1, . . . , xm) and ~y = (y1, . . . , ym). It is easy to check that
D×[−] satisfies [CD1-7]. Thus, FVect is a cartesian differential category.

Remark. In cartesian differential category, the partial derivative of a morphism can be
obtained by zeroing out the components on which the differentiation is not required.
Consider a morphism f : A1×A2 → B. To obtain the partial derivative of f on the first
component, we zero out the component A2. i.e.

A1 × (A1 × A2)
〈IdA1

, 0A2
〉×IdA1×A2 // (A1 × A2)× (A1 × A2)

D×[f ] // B

Therefore, we define D1
×[f ] := D×[f ] ◦

(
〈IdA1 , 0A2〉× IdA1×A2

)
to be the derivative of f on

its first component. Similarly, we define D2
×[f ] := D×[f ] ◦

(
〈0A1 , IdA2〉 × IdA1×A2

)
to be

the derivative of f on its second component.

5.2 Cartesian Closed Differential Category

Cartesian differential category is not enough to provide categorical semantics for differen-
tial λ-calculus as the cartesian differential operator does not necessarily behave well with
exponentials. Bucciarelli et al. added a new rule to the cartesian differential operator and
proved that a cartesian differential category with such an operator can soundly model
differential λ-calculus.

Definition 5.5 (Cartesian closed differential category). A cartesian differential category
is a cartesian closed differential category if

• it is cartesian closed,

• λ(−) preserves the additive structure, i.e.λ(f + g) = λ(f) + λ(g) and λ(0) = 0,

• D×[−] satisfies the following (D-curry) rule. For any f : A1 × A2 → B,

D×[λ(f)] = λ(D×[f ] ◦ 〈π1 × 0A2 , π2 × IdA2〉)

It is easy to check that the following diagram commutes.

(A1 × A1)× A2

a

��

〈π1×0A2
, π2×IdA2

〉
// (A1 × A2)× (A1 × A2)

D×[f ] // B

A1 × (A1 × A2)

〈IdA1
, 0A2

〉×IdA1×A2

33

D1
×[f ]

33

Hence, we can rewrite the rule (D-curry) as follows,

D×[λ(f)] = λ(D1
×[f ] ◦ a)

where a : (A1 × A1) × A2 → A1 × (A1 × A2) is the associative morphism. Intuitively,
(D-curry) says that if we curry f and take its derivative, it is the same as currying the
derivative of f in its first component.
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Recall that in defining the categorical model for simply-typed λ-calculus, capture-free
substitution is modelled by composition of morphisms. Since differential substitution is
introduced for differential λ-calculus, we need another binary operator that models it.

Definition 5.6. Let ? : C(A1×A2, B)×C(A1, A2)→ C(A1×A2, B) be a binary operator
where

f ? g := D×[f ] ◦ 〈〈0A1×A2
A1

, g ◦ π1〉, IdA1×A2〉
The binary operator ? can be viewed as the counterpart of differential substitution. It is
easy to check that the following diagram commutes.

A1 × A2

〈〈0A1×A2
A1

, g◦π1〉, IdA1×A2
〉
//

〈g◦π1, IdA1×A2
〉 ++

(A1 × A2)× (A1 × A2)
D×[f ] // B

A2 × (A1 × A2)

〈0A1
, IdA2

〉×IdA1×A2

OO

D2
×[f ]

33

So, we can write
f ? g = D2

×[f ] ◦ 〈g ◦ π1, IdA1×A2〉.
Intuitively, f ? g is obtained by force-feeding the second argument of f with exactly one
copy of the result of g.

The following proposition tells us that the order of force-feeding f with results of
morphisms does not matter. The proof can be found in Appendix B.

Proposition 5.1. Let f : A1×A2 → B and g, h : A1 → A2 be morphisms in a cartesian
closed differential category. We have

(f ? g) ? h = (f ? h) ? g.

5.3 Categorical Semantics of Differential Typed Terms

Definition 5.7 (Categorical Semantics of Differential Typed Terms). Let C be a cartesian
closed differential category. A structrue M in C is specified by giving each type variable
γ ∈ TV an object JγKM of C. The interpretation of types and typed terms with respect
to the structure M is defined by induction as follows, where > is the terminal object of
C and τA is the unique morphism from A to >,

• Types
JunitK := >
JγK := JγKM, where γ ∈ TV
Jα× βK := JαK× JβK
Jα⇒ βK := JαK⇒ JβK

• Type Contexts
J∅K := >
JΓ ∪ {x : α}K := JΓK× JαK

• Typed Terms

(var)
JΓ ∪ {x : α} ` x : αK := π2 : JΓK× JαK→ JαK
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JΓ ∪ {x : α} ` s : βK = f : JΓK× JαK→ JβK
(abs)

JΓ ` λx.s : α⇒ βK := λ(f) : JΓK→ (JαK⇒ JβK)

JΓ ` s : α⇒ βK = S : JΓK→ (JαK⇒ JβK) JΓ ` t : αK = T : JΓK→ JαK
(app)

JΓ ` s t : βK := ev ◦ 〈S, T 〉 : JΓK→ (JαK⇒ JβK)× JαK→ JβK

(unit)
JΓ ` 〈〉 : unitK := τJΓK : JΓK→ >

JΓ ` s : αK = S JΓ ` t : βK = T
(pair)

JΓ ` 〈s, t〉 : α× βK := 〈S, T 〉 : JΓK→ JαK× JβK

JΓ ` p : α× βK = P : JΓK→ JαK× JβK
(Fst)

JΓ ` Fst(p) : αK := π1 ◦ P : JΓK→ JαK

JΓ ` p : α× βK = P : JΓK→ JαK× JβK
(Snd)

JΓ ` Snd(p) : βK := π2 ◦ P : JΓK→ JβK

JΓ `D s : α⇒ βK = S : JΓK→ (JαK⇒ JβK) JΓ `D t : αK = T : JΓK→ JαK
(D)

JΓ `D Ds · t : α⇒ βK := λ
(
λ−(S) ? T

)
: JΓK→ (JαK⇒ JβK)

JΓ `D si : αK = Si : JΓK→ JαK ∀i ∈ I
(sum)

JΓ `D
∑

i∈I si : αK :=
∑

i∈I Si : JΓK→ JαK

Remark. These interpretations should come as no surprise. The interpretation of the (D)
rule is basically uncurrying S, force-feed one copy of the result of T to the uncurried S,
and then currying the result.

Recall 5.2 (Model). We say a structure M satisfies a rule Γ ` s = t : α if the interpre-
tations of Γ ` s : α and Γ ` t : α with respect to M are the same. i.e.

JΓ ` s : αK = JΓ ` t : αK.

A structure M is a model of a theory T if M satisfies all the rules in T . i.e.

T B Γ ` s = t : α =⇒ JΓ ` s : αK = JΓ ` t : αK.
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5.4 Soundness and Completeness Theorem

The following substitution lemma shows that capture-free/differential substitution can
be modelled soundly by composition/the binary operator ?. Note that the (D-curry) rule
is required in proving the following lemma which is crucial in proving the (βD) case in
the soundness theorem.

Lemma 5.3. (Generalized Substitution Lemma) Let M be a structure in a cartesian
closed differential category. If Γ ∪ {x : α} `D s : β and Γ `D t : α, then

(i) JΓ `D s[t/x] : βK = JΓ ∪ {x : α} `D s : βK ◦
〈
IdJΓK, JΓ `D t : αK

〉
;

(ii) JΓ ∪ {x : α} `D
∂s

∂x
· t : βK = JΓ ∪ {x : α} `D s : βK ? JΓ `D t : αK.

Remark. The proof of this generalized substitution lemma is very technical and can be
found in the appendix of [Man12].

Theorem 5.4. (Soundness Theorem) Given a cartesian closed differential category C,
any structure M in C is a model of λβηD.

Proof. We show that a structure M satisfies all rules in λβηD by induction. The cases for
the rules in λβη can be found in th proof of Theorem A.5.

(βD) Let S = JΓ ∪ {x : α} `D s : βK and T = JΓ `D t : αK. We have

JΓ `D D(λx.s) · t : α⇒ βK = λ
(
λ−
(
λ(S)

)
? T
)

= λ(S ? T )

= λ
(
JΓ ∪ {x : α} `D

∂s

∂x
· t : βK

)
(Lemma 5.3 (ii))

= JΓ `D λx.
(∂s
∂x
· t
)

: α⇒ βK

Thus M satisfies Γ `D D(λx.s) · t = λx.
(∂s
∂x
· t
)

: α⇒ β.

(swD) Let S = JΓ `D s : α⇒ βK, T = JΓ `D t : αK and U = JΓ `D u : αK.

JΓ `D D(Ds · t) · u : α⇒ βK = λ
(
λ−
(
λ(λ−(S) ? T )

)
? U
)

= λ
(
(λ−(S) ? T ) ? U

)
= λ

(
(λ−(S) ? U) ? T

)
(Prop. 5.1)

= JΓ `D D(Ds · u) · t : α⇒ βK

Thus M satisfies Γ `D D(Ds · t) · u = D(Ds · u) · t : α⇒ β.

The induction case for the (appD) and (sum) rules are trivial.

Soundness tells us that the categorical semantics of differential typed terms actually
makes sense. Thus, we can now define a differential λ-theory based on any cartesian
closed differential category.

Corollary 5.5. Every cartesian closed differential category C gives rise to a differential
λ-theory Th(C).
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Proof. Let M be a structure in C. Let

Th(C) :=
{

Γ `D s = t : α | JΓ `D s : αK = JΓ `D t : αK
}
.

By soundness, λβηD is included in Th(C). So, Th(C) is indeed a differential λ-theory.

We have proved that for any cartesian closed differential category, one can define a
differential λ-theory with respect to it. Now, we consider the converse. Given a differential
λ-theory, we would like to construct a cartesian closed differential category in which the
theory can be modelled soundly in the category. More specifically, we would like to
construct the “smallest” such category. We call it the classifying category of the theory.
The classifying category is the “smallest” in the sense that for any other categories D, in
which the theory can be modelled soundly, there is a cartesian closed differential functor
F from the classifying category to D such that the interpretation of the theory in D
can be expressed as the composition of the interpretation of the theory in the classifying
category and F .

To have a notion of “smallest”, we consider the category CCDCat∼=(C,D) of cartesian
closed differential functors C → D and natural isomorphisms. We say a functor F : C →
D between cartesian closed differential categories is a cartesian closed differential functor
if F preserves

• the additive structure, i.e.F (f + g) = F (f) + F (g) and F (0) = 0,

• products via the isomorphism Φ := 〈Fπ1, Fπ2〉,

• exponentials via the isomorphism Ψ := λ
(
F (ev) ◦ Φ

)
,

• the cartesian differential operator, i.e.F
(
D×[f ]

)
= D×

[
F (f)

]
◦ Φ.

We also consider the category DMod∼=(T , C) of models of a differential λ-theory T in
a cartesian closed differential category C and additive model homomorphisms. A model
homomorphism h : M → N is given by isomorphisms hγ : JγKM → JγKN for each type
variable γ, and

hα×β := hα × hβ and hα⇒β := h−1
α ⇒ hβ := λ

(
hβ ◦ ev ◦ (Id× h−1

α )
)
.

Definition 5.8 (Classifying Category). Given a differential λ-theory T , we say a cate-
gory, denoted Cl(T ), is classifying if there is a “generic” model that soundly interprets
T in Cl(T ) and for every cartesian closed differential category D, there is a natural
equivalence

CCDCat∼=(Cl(T ),D) ' DMod∼=(T ,D).

So, for any cartesian closed differential category D, a model of T in D can be rep-
resented by a functor from the classifying category Cl(T ) to D. Thus, the classifying
category is the “smallest”. It is not difficult to see that for any differential λ-theory, its
classifying category is unique up to isomorphism.

We set up the equivalence in the forward direction via the following family of modelling
functors.

Definition 5.9 (Modelling functors). Let C and D be cartesian closed differential cate-
gories, T be a differential λ-theory in C and M be a model of T in C. We define a family
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of modelling functors DApM : CCDCat∼=(C,D) → DMod∼=(T ,D) which for any cartesian
closed differential functor F : C → D, DApMF is a model of T in D, where

JγKDApMF := F (JγKM),

and for any natural isomorphism φ : F → G, DApMφ : DApMF → DApMG is an additive
model homomorphism where (

DApMφ
)
γ

:= φJγKM .

Remark. It is easy to check that DApMF is indeed a model of T in D, DApMφ is indeed an
additive model homomorphism and DApM is a well-defined functor from CCDCat∼=(C,D)
to DMod∼=(T ,D).

The following technical lemma will be used in proving completeness. Complete proofs
can be found in Appendix B.

Lemma 5.6. (i) If x /∈ FV(t), then

(D(λx.(t[t′/x′])) · u) s = (D(λx′.t) · ((D(λx.t′) · u) s)) t′[s/x].

(ii) if x 6≡ y, x, y /∈ FV(M) and x, y, z /∈ FV(u) ∪ FV(v),( ∂
∂x

(
M [〈x, y〉/z]

)
· u
)

[v/x] =
(∂M
∂z
· 〈u, 0〉

)
[〈v, y〉/z].

Theorem 5.7 (Completeness Theorem). Every differential λ-theory T has a classifying
cartesian closed differential category Cl(T ).

Proof. We first construct a cartesian closed differential category based on the syntax of
the given differential λ-theory T and then prove that it is classifying by presenting the
“inverse” for the functor DApG : CCDCat∼=(Cl(T ),D)→ DMod∼=(T ,D).

Given a differential λ-theory T , we define a cartesian closed differential category
Cl(T ) where

• objects are types of T ,

• morphisms f : α → β are equivalence classes of typed terms
[
{x : α} ` M : β

]
,

where two typed terms are equivalent if they are provably equal in T . We write
{x : α} `M : β instead of

[
{x : α} `M : β

]
,

• composition of g = {y : β} ` N : γ and f = {x : α} `M : β is

f ◦ g = {x : α} ` N [M/y] : γ,

• identity morphism of the object α is Idα := {x : α} ` x : α,

• product of objects α and β is α× β with projections

π1 = {z : α× β} ` Fst(z) : α and π2 = {z : α× β} ` Snd(z) : β,

• pairing of morphisms f = {x : γ} `M : α and g = {x : γ} ` N : β is

〈f , g〉 = {x : γ} ` 〈M,N〉 : α× β
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• exponential of objects β and γ is β ⇒ γ and the evaluating morphism is

ev = {z : (β ⇒ γ)× β} ` Fst(z) Snd(z) : γ,

where for any morphism f = {z : α× β} `M : γ, the exponential mate of f is

λ(f) = {x : α} ` λy.(M [〈x, y〉/z]) : β ⇒ γ,

where x and y are distinct and fresh variables,

• given objects α and β,
(
Cl(T )(α, β),+,0

)
is a commutative monoid where the sum

of the morphisms f = {x : α} `M : β and g = {x : α} ` N : β is

f + g := {x : α} `M +N : β,

and the unit is 0 := {x : α} ` 0 : β,

• given morphism f = {x : α} `M : β, its derivative is

D×[f ] := {y : α× α} `
(
D(λx.M) · Fst(y)

)
Snd(y) : β,

where y is a fresh variable.

The proof that Cl(T ) is a cartesian closed category can be found in the proof of
Theorem A.7. To verify Cl(T ) is a cartesian closed differential category, it is enough to
prove that it is cartesian left additive, and D×[−] satisfies [CD1-7] and (D-curry).

Verifying that Cl(T ) is a cartesian left additive category is easy. We would only look
at the requirement that the pairing of additive morphisms is additive, since this explains
the syntactic sugar on sums of pairing terms in differential λ-calculus given in 2.1.

Let f = {y : γ} `M : α and g = {y : γ} ` N : β be additive and h = {z : δ} ` H : γ
and k = {z : δ} ` K : γ be morphisms.

〈f, g〉 ◦ (h+ k) = ({y : γ} ` 〈M,N〉 : α× β) ◦ ({z : δ} ` H +K : γ)

= {z : δ} ` 〈M,N〉[H +K/y] : α× β
= {z : δ} ` 〈M [H +K/y], N [H +K/y]〉 : α× β
= 〈f ◦ (h+ k), g ◦ (h+ k)〉
= 〈f ◦ h+ f ◦ k, g ◦ h+ g ◦ k〉 (f and g are additive)
= 〈f ◦ h, g ◦ h〉+ 〈f ◦ k+ g ◦ k〉
= 〈f, g〉 ◦ h+ 〈f, g〉 ◦ k

〈f, g〉 ◦ 0 = ({y : γ} ` 〈M,N〉 : α× β) ◦ ({z : δ} ` 0 : γ)

= {z : δ} ` 〈M,N〉[0/y] : α× β
= {z : δ} ` 〈M [0/y], N [0/y]〉 : α× β
= 〈f ◦ 0, g ◦ 0〉
= 〈0,0〉 (f and g are additive)
= 0

We check that D×[−] is indeed a cartesian differential operator that satisfies [CD1-7]
and (D-curry).
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[CD1] D×[f + g] = D×[f ] +D×[g] and D×[0] = 0.

D×[f + g]

= D
[
{x : α} `M +N : β

]
= {y : α× α} `

(
D
(
λx.(M +N)

)
· Fst(y)

)
Snd(y) : β

= {y : α× α} `
(
D(λx.M) · Fst(y)

)
Snd(y) +

(
D(λx.N) · Fst(y)

)
Snd(y) : β

= D×[f ] +D×[g]

D×[0] = D
[
{x : α} ` 0 : β

]
= {y : α× α} `

(
D(λx.0) · Fst(y)

)
Snd(y) : β

= {y : α× α} ` 0 : β = 0

[CD2] D×[f ] ◦ 〈h+ k, v〉 = D×[f ] ◦ 〈h, v〉+D×[f ] ◦ 〈k, v〉 and D×[f ] ◦ 〈0, v〉 = 0.

D×[f ] ◦ 〈h+ k, v〉
= D

[
{x : α} `M : β

]
◦
〈
{y : γ} ` H +K : α {y : γ} ` V : α

〉
=
(
{z : α× α} `

(
D(λx.M) · Fst(z)

)
Snd(z) : β

)
◦
(
{y : γ} ` 〈H +K,V 〉 : α

)
= {y : γ} `

((
D(λx.M) · Fst(z)

)
Snd(z)

)
[〈H +K,V 〉/z] : β

= {y : γ} `
(
D(λx.M) · (H +K)

)
V : β

= {y : γ} `
(
D(λx.M) · (H)

)
V +

(
D(λx.M) · (K)

)
V : β

= D×[f ] ◦ 〈h, v〉+D×[f ] ◦ 〈k, v〉

D×[f ] ◦ 〈0, v〉 = {y : γ} `
(
D(λx.M) · 0

)
V : β = {y : γ} ` 0 : β = 0

[CD3] D×[Id] = π1, D×[π1] = π1 ◦ π1 and D×[π2] = π2 ◦ π1.

D×[Id] = D
[
{x : α} ` x : α

]
= {y : α× α} `

(
D(λx.x) · Fst(y)

)
Snd(y) : α

= {y : α× α} `
(
λx.
(∂x
∂x
· Fst(y)

))
Snd(y) : α (βD)

= {y : α× α} `
(
λx.Fst(y)

)
Snd(y) : α

= {y : α× α} ` Fst(y) : α (β)
= π1

D×[π1]

= D
[
{z : α× β} ` Fst(z) : α

]
= {y : (α× β)× (α× β)} `

(
D(λz.Fst(z)) · Fst(y)

)
Snd(y) : α

= {y : (α× β)× (α× β)} `
(
λz.
(∂Fst(z)

∂z
· Fst(y)

))
Snd(y) : α (βD)

= {y : (α× β)× (α× β)} `
(
λz.Fst

(∂z
∂z
· Fst(y)

))
Snd(y) : α

= {y : (α× β)× (α× β)} `
(
λz.Fst(Fst(y))

)
Snd(y) : α

= {y : (α× β)× (α× β)} ` Fst(Fst(y)) : α (β)
= π1 ◦ π1

The proof for D×[π2] = π2 ◦ π1 is similar.
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[CD4] D×[〈f, g〉] = 〈D×[f ],D×[g]〉

D×[〈f, g〉]
= {y : α× α} `

(
D(λx.〈M,N〉) · Fst(y)

)
Snd(y) : β × γ

= {y : α× α} `
(
λx.
( ∂
∂x
〈M,N〉 · Fst(y)

))
Snd(y) : β × γ (βD)

= {y : α× α} `
(
λx.
〈∂M
∂x
· Fst(y)

∂N

∂x
· Fst(y)

〉)
Snd(y) : β × γ

= {y : α× α} `
〈(
λx.
(∂M
∂x
· Fst(y)

))
Snd(y)(

λx.
(∂N
∂x
· Fst(y)

))
Snd(y)

〉
: β × γ (†)

= 〈D×[f ],D×[g]〉

(†) Note that

Γ `
(
λx.〈s, t〉

)
u

β
= 〈s, t〉[u/x] = 〈s[u/x], t[u/x]〉 β

= 〈(λx.s) u, (λx.t) u〉 : α

[CD5] D×[f ◦ g] = D×[f ] ◦ 〈D×[g], g ◦ π2〉

D×[f ] ◦ 〈D×[g], g ◦ π2〉
=
(
{w : β × β} `

(
D(λy.N) · Fst(w)

)
Snd(w) : γ

)
◦(

{z : α× α} `
〈 (

D(λx.M) · Fst(z)
)
Snd(z), M [Snd(z)/x]

〉
: β × β

)
= {z : α× α} `

((
D(λy.N) · Fst(w)

)
Snd(w)

)
[〈(

D(λx.M) · Fst(z)
)
Snd(z),M [Snd(z)/x]

〉
/w
]

: γ

= {z : α× α} `
(
D(λy.N) ·

((
D(λx.M) · Fst(z)

)
Snd(z)

))
M [Snd(z)/x] : γ

= {z : α× α} `
(
D(λx.N [M/y]) · Fst(z)

)
Snd(z) : γ (Lemma 5.6 (i))

= D
[
{x : α} ` N [M/y] : γ

]
= D×[f ◦ g]

[CD6] D×[D×[f ]] ◦ 〈〈g,0〉, 〈h, k〉〉 = D×[f ] ◦ 〈g, k〉

D×[D×[f ]] ◦ 〈〈g,0〉, 〈h, k〉〉
= D

[
{y : α× α} `

(
D(λx.M) · Fst(y)

)
Snd(y) : β

]
◦(

{w : γ} ` 〈〈G, 0〉, 〈H,K〉〉 : (α× α)× (α× α)
)

= {w : γ} `
((

D
(
λy.
(
(D(λx.M) · Fst(y)) Snd(y)

))
· Fst(z)

)
Snd(z)

)
[
〈〈G, 0〉, 〈H,K〉〉/z

]
: β

= {w : γ} `
(
D
(
λy.
(
(D(λx.M) · Fst(y)) Snd(y)

))
· 〈G, 0〉

)
〈H,K〉 : β

= {w : γ} `
(
λy.
( ∂
∂y

(
(D(λx.M) · Fst(y)) Snd(y)

)
· 〈G, 0〉

))
〈H,K〉 : β (βD)

= {w : γ} `
(
λy.
((( ∂

∂y
(D(λx.M) · Fst(y))

)
· 〈G, 0〉

)
Snd(y) +(

D
(
D(λx.M) · Fst(y)

)
·
(∂ Snd(y)

∂y
· 〈G, 0〉

))
Snd(y)

))
〈H,K〉 : β
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= {w : γ} `
(
λy.
((

D
(
λx.
(∂M
∂y
· 〈G, 0〉

))
· Fst(y) + D(λx.M) ·

(∂ Fst(y)

∂y
· 〈G, 0〉

))
Snd(y) +

(
D
(
D(λx.M) · Fst(y)

)
· 0
)
Snd(y)

))
〈H,K〉 : β (βD)

= {w : γ} `
(
λy.
(
0 + (D(λx.M) ·G) Snd(y) + 0

))
〈H,K〉 : β (Prop. 2.1)

= {w : γ} `
(
D(λx.M) ·G

)
K : β (β)

= {w : γ} `
(
(D(λx.M) · Fst(y)) Snd(y)

) [
〈G,K〉/y

]
: β

= D×[f ] ◦ 〈g, k〉

[CD7] D×[D×[f ]] ◦ 〈〈0, h〉, 〈g, k〉〉 = D×[D×[f ]] ◦ 〈〈0, g〉, 〈h, k〉〉

D×[D×[f ]] ◦ 〈〈0, h〉, 〈g, k〉〉
= D

[
{y : α× α} ` (D(λx.M) · Fst(y)) Snd(y) : β

]
◦ 〈〈0, h〉, 〈g, k〉〉

=
(
{z : (α× α)× (α× α)} `(

D
(
λy.
(
(D(λx.M) · Fst(y)) Snd(y)

))
· Fst(z)

)
Snd(z) : β

)
◦(

{w : γ} ` 〈〈0, H〉, 〈G,K〉〉 : (α× α)× (α× α)
)

= {w : γ} `
(
D
(
λy.((D(λx.M) · Fst(y)) Snd(y))

)
· 〈0, H〉

)
〈G,K〉 : β

= {w : γ} `
(
λy.
( ∂
∂y

(
(D(λx.M) · Fst(y)) Snd(y)

)
· 〈0, H〉

))
〈G,K〉 : β (βD)

= {w : γ} `
(
λy.
(( ∂
∂y

(
D(λx.M) · Fst(y)

)
· 〈0, H〉

)
Snd(y) +(

D
(
D(λx.M) · Fst(y)

)
·
(∂ Snd(y)

∂y
· 〈0, H〉

))
Snd(y)

))
〈G,K〉 : β

= {w : γ} `
(
λy.
((

D0 · Fst(y) + D(λx.M) · 0
)
Snd(y) +(

D
(
D(λx.M) · Fst(y)

)
·H
)
Snd(y)

))
〈G,K〉 : β

= {w : γ} `
(
D(D(λx.M) ·G) ·H

)
K : β (β)

= {w : γ} `
(
D(D(λx.M) ·H) ·G

)
K : β (swD)

= D×[D×[f ]] ◦ 〈〈0, g〉, 〈h, k〉〉

(D-curry) D[λ(f)] = λ
(
D[f ] ◦ 〈π1× 0, π2× Id〉

)
λ
(
D[f ] ◦ 〈π1× 0, π2× Id〉

)
= λ

((
{u : (α× β)× (α× β)} ` (D(λz.M) · Fst(u)) Snd(u) : γ

)
◦(

{v : (α× α)× β} `
〈〈

Fst(Fst(v)), 0
〉
,
〈
Snd(Fst(v)), Snd(v)

〉〉))
= λ

(
{v : (α× α)× β} `

(
D(λz.M) ·

〈
Fst(Fst(v)), 0

〉) 〈
Snd(Fst(v)), Snd(v)

〉
: γ
)

= {w : α× α} ` λy.
(((

D(λz.M) ·
〈
Fst(Fst(v)), 0

〉)
〈
Snd(Fst(v)), Snd(v)

〉)
[〈w, y〉/v]

)
: β ⇒ γ

= {w : α× α} ` λy.
((

D(λz.M) · 〈Fst(w), 0〉
)
〈Snd(w), y〉

)
: β ⇒ γ
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= {w : α× α} ` λy.
((
λz.
(∂M
∂z
· 〈Fst(w), 0〉

))
〈Snd(w), y〉

)
: β ⇒ γ (βD)

= {w : α× α} ` λy.
((∂M

∂z
· 〈Fst(w), 0〉

)
[〈Snd(w), y〉/z]

)
: β ⇒ γ (β)

= {w : α× α} ` λy.
((∂ M [〈x, y〉/z]

∂x
· Fst(w)

)
[Snd(w)/x]

)
: β ⇒ γ (5.6 (ii))

= {w : α× α} `
(
λxy.

(∂ M [〈x, y〉/z]

∂x
· Fst(w)

))
Snd(w) : β ⇒ γ (β)

= {w : α× α} `
(
λx.
(∂ (λy.(M [〈x, y〉/z]))

∂x
· Fst(w)

))
Snd(w) : β ⇒ γ

= {w : α× α} ` (D(λxy.(M [〈x, y〉/z])) · Fst(w)) Snd(w) : β ⇒ γ (βD)
= D[{x : α} ` λy.(M [〈x, y〉/z]) : β ⇒ γ]

= D[λ(f)]

Thus, Cl(T ) is indeed a cartesian closed differential category. Now, we show that it is
classifying by providing the “inverse” of the modelling functors.

Let G be a structure of T in Cl(T ) which sets

JγKG := γ.

It is easy to check that G is indeed a model of T . Let D be a cartesian closed differential
category. We define DAp−1

G : DMod∼=(T ,D)→ CCDCat∼=(Cl(T ),D) where, for any model
M of T in D,

DAp−1
G (M) : Cl(T ) −→ D

α 7−→ JαKM
{x : α} `M : β 7−→ J{x : α} `M : βKM : JαKM → JβKM.

Soundness tells us that DAp−1
G (M) is well-defined. Note that

Φ :=
〈
DAp−1

G (M)(π1),DAp−1
G (M)(π2)

〉
= Id and Ψ := λ

(
DAp−1

G (M)(ev) ◦ Φ
)

= Id

are isomorphisms. Thus, DAp−1
G (M) preserves products and exponentials. For any mor-

phisms g = {x : α} ` G : β and h = {x : α} ` H : β,

DAp−1
G (M)(g+ h) = J{x : α} ` G+H : βK

= J{x : α} ` G : βK + J{x : α} ` H : βK
= DAp−1

G (M)(g) + DAp−1
G (M)(h).

DAp−1
G (M)(0) = J{x : α} ` 0 : βK = 0.

Hence, DAp−1
G (M) preserves the additive structure. Now, consider a morphism f = {x :

α} `M : β,

DAp−1
G (M)

(
D×[f ]

)
= DAp−1

G (M)
(
{y : α× α} `

(
D(λx.M) · Fst(y)

)
Snd(y) : β

)
= J{y : α× α} `

(
D(λx.M) · Fst(y)

)
Snd(y) : βK

= ev ◦
〈
J{y : α× α} ` D(λx.M) · Fst(y) : α⇒ βK, J{y : α× α} ` Snd(y) : αK

〉
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= ev ◦
〈
λ
(
λ−(J{y : α× α} ` λx.M : α⇒ βK) ? J{y : α× α} ` Fst(y) : αK

)
,π2

〉
= ev ◦

〈
λ
(
λ−(λ(J{y : α× α, x : α} `M : βK)) ? π1

)
,π2

〉
= ev ◦

〈
λ
(
(DAp−1

G (M)(f) ◦ π2) ? π1

)
,π2

〉
= ev ◦

〈
λ
(
D×

[
DAp−1

G (M)(f) ◦ π2

]
◦ 〈〈0,π1 ◦ π1〉, Id〉

)
,π2

〉
= ev ◦

〈
λ
(
D×

[
DAp−1

G (M)(f)
]
◦ 〈π2 ◦ π1,π2 ◦ π2〉 ◦ 〈〈0,π1 ◦ π1〉, Id〉

)
,π2

〉
(CD5)

= ev ◦
〈
λ
(
D×

[
DAp−1

G (M)(f)
]
◦ 〈π1 ◦ π1,π2〉

)
,π2

〉
= ev ◦

〈
λ
(
D×

[
DAp−1

G (M)(f)
]
◦ (π1 × Id)

)
,π2

〉
= ev ◦

〈
λ
(
D×

[
DAp−1

G (M)(f)
])
◦ π1,π2

〉
(Prop. A.3)

= ev ◦
(
λ
(
D×

[
DAp−1

G (M)(f)
])
× Id

)
= D×

[
DAp−1

G (M)(f)
]

Since Φ = Id, DAp−1
G (M) preserves cartesian differential operator and we conclude that it

is a cartesian closed differential functor.
For any additive model homomorphism h : M → N in DMod∼=(T ,D), we define the

natural isomorphism DAp−1
G (h) : DAp−1

G (M)→ DAp−1
G (N) by setting(

DAp−1
G (h)

)
α

:= hα : JαKM → JαKN.

We verify that
(
DAp−1

G (h)
)
α
is a natural transformation by induction on the length of the

derivation of the differential typed terms Γ `M : β that the following diagram commutes.

JΓKM
hΓ //

JΓ`M :βKM
��

JΓKN
JΓ`M :βKN
��

JβKM
hβ // JβKN

The cases for the rules (var), (abs), (app), (unit), (pair), (Fst) and (Snd) are already con-
sidered in the proof of Theorem A.7.

(sum) If Γ ` si : α for all i ∈ I, then Γ `
∑

i si : α is also a typed term

JΓ `
∑
i

si : αKN ◦ hΓ =
(∑

i

JΓ ` si : αKN
)
◦ hΓ

=
∑
i

(
JΓ ` si : αKN ◦ hΓ

)
(D is left additive)

=
∑
i

(
hα ◦ JΓ ` si : αKM

)
(IH)

= hα ◦
∑
i

JΓ ` si : αKM (hα is additive)

= hα ◦ JΓ `
∑
i

si : αKM

(D) For typed terms Γ ` s : α⇒ β and Γ ` t : α, there is typed term Γ ` Ds · t : α⇒ β.
Let SM := JΓ ` s : α ⇒ βKM, SN := JΓ ` s : α ⇒ βKN and TM := JΓ ` t : αKM,
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TN := JΓ ` t : αKN. By inductive hypothesis, we know that SN ◦ hΓ = hα⇒β ◦ SM
and TN ◦ hΓ = hα ◦ TM . So, on the left hand side, we have

JΓ ` Ds · t : α⇒ βKN ◦ hΓ

= λ
(
λ−(SN) ? TN

)
◦ hΓ

= λ
(
D×[λ−(SN)] ◦ 〈〈0, TN ◦ π1〉, Id〉

)
◦ hΓ

= λ
(
D×[evN ◦ 〈SN ◦ π1, π2〉] ◦ 〈〈0, TN ◦ π1〉, Id〉 ◦ (hΓ × Id)

)
(Prop. A.3)

= λ
(
D×[evN] ◦

〈
D×[〈SN ◦ π1, π2〉], 〈SN ◦ π1, π2〉 ◦ π2

〉
◦

〈〈0, TN ◦ π1〉, Id〉 ◦ (hΓ × Id)
)

(CD5)
= λ

(
D×[evN] ◦

〈
〈D×[SN ] ◦ 〈π1 ◦ π1, π1 ◦ π2〉, π2 ◦ π1〉, 〈SN ◦ π1, π2〉 ◦ π2

〉
◦〈

〈0, TN ◦ hΓ ◦ π1〉, 〈hΓ ◦ π1, π2〉
〉)

(CD4, 5)
= λ

(
D×[evN] ◦

〈
〈D×[SN ] ◦ 〈0, hΓ ◦ π1〉, TN ◦ hΓ ◦ π1〉, 〈SN ◦ hΓ ◦ π1, π2〉

〉)
= λ

(
D×[evN] ◦

〈
〈0, TN ◦ hΓ ◦ π1〉, 〈SN ◦ hΓ ◦ π1, π2〉

〉)
(CD2)

= λ
(
D×[evN] ◦

〈
〈0, hα ◦ TM ◦ π1〉, 〈hα⇒β ◦ SM ◦ π1, π2〉

〉)
(IH)

And on the right hand side,

hα⇒β ◦ JΓ ` Ds · t : α⇒ βKM
= λ

(
hβ ◦ ev ◦ (Id× h−1

α )
)
◦ λ
(
λ−(SM) ? TM

)
= λ

(
hβ ◦ ev ◦ (Id× h−1

α ) ◦
(
λ
(
λ−(SM) ? TM

)
× Id

))
(Prop. A.3)

= λ
(
hβ ◦

(
λ−(SM) ? TM

)
◦ (Id× h−1

α )
)

= λ
(
hβ ◦D×

[
λ−(SM)

]
◦
〈
〈0, TM ◦ π1〉, Id

〉
◦ (Id× h−1

α )
)

= λ
(
hβ ◦D×

[
evM ◦ 〈SM ◦ π1, π2〉

]
◦
〈
〈0, TM ◦ π1〉, Id

〉
◦ (Id× h−1

α )
)

= λ
(
hβ ◦D×

[
evM] ◦

〈
〈D×[SM ◦ π1], D×[π2]〉, 〈SM ◦ π1, π2〉 ◦ π2

〉
◦〈

〈0, TM ◦ π1〉, Id
〉
◦ (Id× h−1

α )
)

(CD5)

= λ
(
hβ ◦D×

[
evM] ◦

〈
〈D×[SM ] ◦ 〈π1 ◦ π1, π1 ◦ π2〉, π2 ◦ π1〉, 〈SM ◦ π1, π2〉 ◦ π2

〉
◦〈

〈0, TM ◦ π1〉, 〈π1, h
−1
α ◦ π2〉

〉)
(CD3, 5)

= λ
(
hβ ◦D×

[
evM] ◦

〈
〈D×[SM ] ◦ 〈0, π1〉, TM ◦ π1〉, 〈SM ◦ π1, h

−1
α ◦ π2〉

〉)
= λ

(
hβ ◦D×

[
evM] ◦

〈
〈0, TM ◦ π1〉, 〈SM ◦ π1, h

−1
α ◦ π2〉

〉)
(CD2)

= λ
(
D×
[
evN] ◦

(
(hα⇒β × hα)× (hα⇒β × hα)

)
◦〈

〈0, TM ◦ π1〉, 〈SM ◦ π1, h
−1
α ◦ π2〉

〉)
(IH on ev)

= λ
(
D×
[
evN] ◦

〈
〈hα⇒β ◦ 0, hα ◦ TM ◦ π1〉, 〈hα⇒β ◦ SM ◦ π1, hα ◦ h−1

α ◦ π2〉
〉)

= λ
(
D×
[
evN] ◦

〈
〈0, hα ◦ TM ◦ π1〉, 〈hα⇒β ◦ SM ◦ π1,π2〉

〉)
(hα⇒β is additive)

= JΓ ` Ds · t : α⇒ βKN ◦ hΓ

Thus, DAp−1
G : DMod∼=(T ,D) → CCDCat∼=(Cl(T ),D) is a natural transformation.

Since hα is an isomorphism for any type α, DAp−1
G is a natural isomorphism.
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Lastly, we check that DApG and DAp−1
G are indeed equivalence by defining the following

natural isomorphisms

µ : DApGDAp
−1
G
∼= IdDMod∼=(T ,D) and ν : IdCCDCat∼=(Cl(T ),D)

∼= DAp−1
G DApG

such that for any model M of T in D, µM : DApGDAp
−1
G M→M is defined as

(µM)γ := IdJγKM : JγKDApGDAp−1
G M = JγKM → JγKM

and for any cartesian closed functor F : Cl(T )→ D, we define

(νF )α := IdFα : Fα→
(
DAp−1

G (DApGF )
)
α = F (JαKG) = Fα.

Obviously, µ and ν are natural isomorphisms. Thus,

DApG : CCDCat∼=(Cl(T ),D) ' DMod∼=(T ,D) : DAp−1
G

and Cl(T ) is indeed a classifying category with the model G.

5.5 Internal Language of Cartesian Closed Differential Category

In this subsection, we assume that we have an extension of differential λ-theory with
constants and function symbols. We further assume that the soundness and completeness
results are preserved in this extended theory. These assumptions are reasonable as shown
in [Cro93].

With such an extended theory, given any cartesian closed differential category C, we
can define a collection of function symbols which allows us to prove Cl(Th(C)) ' C. Thus,
one can say that the internal language of a cartesian closed differential category C is the
differential λ-theory Th(C). i.e.Th(C) precisely describes the internal structures of C.
This correspondence gives us a way to “prove” properties about the category using the
theory.

Let C be a cartesian closed differential category. We have

• TV := Ob(C), i.e. every object of C is a type variable,

• every morphism of the form k : > → A is a constant, every morphism of the form
f : A → B is a function symbol and there are function symbols Iα : JαK → α and
Jα : α→ JαK for every type α, so the collection of function symbols is

F := {k : A | k ∈ C(>, A)} ∪ {f : A→ B | f ∈ C(A,B) and A 6= >} ∪
{Iα : JαK→ α, Jα : α→ JαK | α is a type}.

The canonical structure M sets JAK := A for every A ∈ TV, JkK := k, JfK := f and
Iα = Jα := IdJαK for every type α. By soundness,

Th(C) := {Γ `D s = t : α | JΓ `D s : αK = JΓ `D t : αK}

is differential λ-theory, and M is a model of Th(C) in C.
We now show that Cl(Th(C)) and C are equivalent by considering the following func-

tors.

Eq : Cl(Th(C)) −→ C Eq−1 : C −→ Cl(Th(C))
α 7−→ JαK A 7−→ A

{x : α} `D M : β 7−→ J{x : α} `D M : βK f : A→ B 7−→ {x : A} `D f(x) : B
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It is easy to see that Eq ◦Eq−1 ∼= IdC. To show Eq−1 ◦Eq ∼= IdCl(Th(C)), we define natural
transformations µ : Eq−1 ◦Eq → IdCl(Th(C)) and ν : IdCl(Th(C)) → Eq−1 ◦Eq where for every
type α,

µα := {x : JαK} `D Iα(x) : α να := {x : α} `D Jα(x) : JαK.

It is easy to show that they are indeed natural isomorphisms.
Thus, Eq : Cl(Th(C)) ' C : Eq−1 and the internal language of C is the differential

λ-theory Th(C). We illustrate in the following example that one can use Th(C) to reason
about C.

Example 5.4. Let C be a cartesian closed differential category and f : (C × A)×D →
B, g : C → A and h : C → B′ be morphisms in C and sw := 〈〈π1 ◦ π1, π2〉, π2 ◦ π1〉 :
(A×B)× C → (A× C)×B.

(i) π2 ? g = g ◦ π1

(ii) (h ◦ π1) ? g = 0

(iii) λ(f) ? g = λ
(
((f ◦ sw) ? (g ◦ π1)) ◦ sw

)
We convert f, g and h to typed terms using function symbols and write J−K for the

canonical model of Th(C) in C. Since Th(C) is the internal language of C, we can prove
the results by showing that the corresponding typed terms are the same.

(i) Writing π2 = J{x : C, y : A} `D y : AK,

π2 ? g = J{x : C, y : A} `D y : AK ? J{x : C} `D g(x) : AK

= J{x : C, y : A} `D
∂y

∂y
· g(x) : AK (Lemma 5.3)

= J{x : C, y : A} `D g(x) : AK
= J{z : C × A} `D g(Fst(z)) : AK
= g ◦ π1

(ii) Note that the result of differential substitution in a function symbol where the
variable is not free is zero.

(h ◦ π1) ? g = J{y : C, x : A} `D h(y) : B′K ? J{y : C} `D g(y) : AK

= J{y : C, x : A} `D
∂h(y)

∂x
· g(x) : AK (Lemma 5.3)

= J{y : C, x : A} `D 0 : AK
= 0

(iii) Note that we can write sw1 := J{(x : C, y : D), z : A} `D 〈〈x, z〉, y〉 : (C ×A)×DK
and sw2 := J{(r : C, s : A), l : D} `D 〈〈r, l〉, s〉 : (C ×D)×AK. We first look at the
morphism ((f ◦ sw1) ? (g ◦ π1)) ◦ sw2.

((f ◦ sw1) ? (g ◦ π1)) ◦ sw2

=
(
J{(x : C, y : D), z : A} `D f(〈〈x, z〉, y〉) : BK ? J{x : C, y : D} `D g(x) : AK

)
◦ sw2

=
(
J{(x : C, y : D), z : A} `D

∂ f(〈〈x, z〉, y〉)
∂z

· g(x) : BK
)
◦ sw2 (Lemma 5.3)

= J{(r : C, s : A), l : D} `D
∂ f(〈〈r, s〉, l〉)

∂s
· g(r) : BK
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λ
(
((f ◦ sw1) ? (g ◦ π1)) ◦ sw2

)
= J{r : C, s : A} `D λl.

(∂ f(〈〈r, s〉, l〉)
∂s

· g(r)
)

: BK

= J{r : C, s : A} `D
∂ λl.f(〈〈r, s〉, l〉)

∂s
· g(r) : BK

= J{r : C, s : A} `D λl.f(〈〈r, s〉, l〉) : BK ? J{z : C} `D g(z) : AK (Lemma 5.3)
= λ(f) ? g

Note that these proofs are more straightforward than the categorical proofs given in
[Man12].

We have shown that one can reason about cartesian closed differential category using
differential λ-theory. Is it possible to reason about differential λ-theories using cartesian
closed differential category? The main appeal of doing so is to allow the use of proof
techniques available in the more abstract mathematical structure (category) in reasoning
about differential λ-theories.

Following the definition given in [Sim95], we say a cartesian closed differential category
is complete with respect to a differential λ-theory T if

T B Γ `D s = t : α ⇐⇒ for any structure M, JΓ `D s : αK = JΓ `D t : αK

Consider the “smallest” differential λ-theory, namely λβηD. It is easy to see that the
classifying category Cl(λβηD) is complete with respect to λβηD. However, the classifying
category is too syntactical to be useful. In the following subsection, we consider the
relational model and show that it is incomplete with respect to λβηD.

5.6 Relational Model

The relational model MRel is the main example of cartesian closed differential category
known in the literature [Gir88; BEM07; BEM10; Man12]. Other examples are the finite-
ness spaces semantics MFin in [BEM10] and game semantics in [LMM13; TO]. Despite
being very simple, we can define a cartesian differential operator in MRel and prove that
it is a cartesian closed differential category.

We describe MRel directly, where

• objects are all the sets,

• morphism f : A→ B is a relation fromN (A) toB, i.e.MRel(A,B) := P(N (A)×B),

• identity of A is the relation IdA := {([a], a) : a ∈ A},

• composition of s ∈ MRel(A,B) and r ∈ MRel(B,C) is given by

r ◦ s :=

{
(m, c) : ∃k ∈ N and ∃(m1, b1), . . . , (mk, bk) ∈ s such that

m = m1 ] · · · ]mk and ([b1, . . . , bk], c) ∈ r}

}
.

It is easy to verify that MRel is indeed a category. We now give the cartesian closed
structure of MRel.

• For any objects A and B, the categorical product A × B is given by the disjoint
union A ]B := ({1} × A) ∪ ({2} ×B), and the terminal object is given by ∅.
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• For any morphisms s ∈ MRel(A,B1) and t ∈ MRel(A,B2), the pairing is given by

〈s, t〉 := {(m, (1, a)) : (m, a) ∈ s} ∪ {(m, (2, a)) : (m, a) ∈ t}.

• For any objects A and B, the exponential object A⇒ B is given by N (A)×B and

ev := {(([(m, b)],m), b) : m ∈ N (A), b ∈ B}.

For any morphism s ∈ MRel(A×B,C), there is a unique morphism

λ(s) := {(p, (m, b)) : ((p,m), b) ∈ s}

such that s = ev ◦ (λ(s)× Id).

As shown in [BEM07], MRel is a cartesian closed category. It is also a cartesian closed
left additive category with a cartesian differential operator.

• Each homset has a commutative monoid (MRel(A,B),∪,∅).

• Given s ∈ MRel(A,B), its derivative is

D×[s] = {(([a],m), b) : (m ] [a], b) ∈ s}

It is easy to see that D×[−] satisfies the axioms [CD1-7] and (D-curry). Thus, MRel is a
cartesian closed differential category.

By soundness, we have

λβηD B Γ `D s = t : α =⇒ for any structure M in MRel, JΓ `D s : αK = JΓ `D t : αK.

We prove that the converse is false. Let M be a structure in MRel and Γ `D s : α.
Say JΓ `D s : αK = f : JΓK → JαK. Note that in λβηD, sums are not idempotent.
i.e.λβηD `D s 6= s+ s : α. However,

JΓ `D s+ s : αK = JΓ `D s : αK ∪ JΓ `D s : αK
= f ∪ f
= f

= JΓ `D s : αK

Thus, MRel is not complete.
It is actually quite difficult to find a “meaningful” cartesian closed differential category

that is complete with respect to λβηD.
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6 Conclusion
Summary At the start of this project, we followed the research of differentiation in
λ-calculus. We explained how the syntax of differential λ-calculus is discovered and
showed that it is resource-sensitive by providing translation maps between differential
λ-calculus and resource λ-calculus. After that, we turned to research of differentiation
in the categorical setting. We described the cartesian closed differential category and
presented the proof that every structure in a cartesian closed differential category is a
model of λβηD.

Next, I have provided a completeness result for differential λ-theory, thus confirmed
that cartesian closed differential categories precisely capture differential λ-theory. More-
over, assuming that we can extend differential λ-theory with constants and function
symbols, I have showed that the internal language of a cartesian closed differential cat-
egory C is exactly the differential λ-theory Th(C), and have given examples to illustrate
how one can “prove” properties about the category using differential λ-theories. Finally,
I have showed that the relational model is not complete with respect to λβηD.

This project can be improved by including a treatment of differential λ-theory with
constants and function symbols, which is not expected to pose any difficulty.

Further Work Inspired by [Sim95], it would be interesting to find the requirements
for cartesian closed differential categories to be complete with respect to λβηD, or an
arbitrary differential λ-theory.

In a more categorical direction, Laird et al. gave a construction of cartesian closed
differential category from symmetric monoidal closed category in [LMM13]. As suggested
in [BEM10], it would then be interesting to see if one can transfer the graphical notion
of symmetric monoidal closed category to cartesian closed differential category.
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Appendices
A Simply-typed λ-Calculus and Cartesian Closed Cat-

egory
This section is targeted for readers who are not familiar with the soundness and complete-
ness theorems for simply-typed λ-calculus and cartesian closed categories. Most material
in this section is borrowed from Crole’s book [Cro93].

First we recall the syntax of simply-typed λ-calculus. Note that to prove completeness,
we include projection and pairing terms in our calculus. After that, we describe the
categorical semantics of the simply-typed λ-calculus in a cartesian closed category with
respect to a structure M, which gives the interpretations of all the type variables. We say
a structure is a model of a theory if it satisfies every rule in the theory. i.e. If s = t is a rule
in the theory, the morphisms interpreting s and t are the same in the category. We then
prove the soundness theorem stating that any structure is a model of the λβη theory. A
corollary of soundness shows that every cartesian closed category C give rise to a λ-theory
Th(C). After that, we prove the converse. Given a λ-theory T , we construct a classifying
cartesian closed category Cl(T ) which is the “smallest” cartesian closed category that can
soundly model the theory.

A.1 Syntax

Definition A.1 (λ-terms). Assume we have a infinitely countable set of variables V . The
collection Λ of λ-terms is defined as follows:

Λ : s, t, u, v ::= x | λx.s | s t | 〈〉 | 〈s, t〉 | Fst(s) | Snd(s) where x ∈ V

Remark. We consider λ-terms up to α-conversion, indicated by ≡. The set of all free
variables in a term FV(−) and capture-free substitution s [t/x] are defined as usual.

Definition A.2 (Typed Terms). Assume we have a collection of type variables TV. Types
and type contexts are defined as follows:

Types α, β ::= unit | γ | α× β | α⇒ β where γ ∈ TV

Type Contexts Γ,∆ ::= ∅ | Γ ∪ {x : α} assuming that {x : α} 6∈ Γ

A λ-term s is a typed term if there is a type context Γ and a type α such that Γ ` s : α
is derivable in the type system with the following rules:

(var)
Γ ∪ {x : α} ` x : α

Γ ∪ {x : α} ` s : β
(abs)

Γ ` λx.s : α⇒ β

Γ ` s : α⇒ β Γ ` t : α
(app)

Γ ` s t : β
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(unit)
Γ ` 〈〉 : unit

Γ ` s : α Γ ` t : β
(pair)

Γ ` 〈s, t〉 : α× β

Γ ` p : α× β
(Fst)

Γ ` Fst(p) : α

Γ ` p : α× β
(Snd)

Γ ` Snd(p) : β

Proposition A.1 (Weakening). Let Γ ` s : α be a typed term and Γ ⊆ Γ′, then Γ′ ` s : α
is derivable.

Definition A.3 (Theory). A simply-typed theory T is a collection of rules of the form
Γ ` s = t : α, where Γ ` s : α and Γ ` t : α are derivable. We write T B Γ ` s = t : α
to indicate that Γ ` s = t : α is a rule in T . The simply-typed λβη-theory, denoted by
λβη, is the smallest theory that is reflective, symmetric, transitive and closed under and
the following rules,

Γ ` s = s′ : α⇒ β Γ ` t = t′ : α(app)
Γ ` st = s′ t′ : β

Γ ∪ {x : α} ` s = t : β
(abs)

Γ ` λx.s = λx.t : α⇒ β

Γ ∪ {x : α} ` s : β Γ ` t : α
(β)

Γ ` (λx.s) t = s [t/x] : β

x 6∈ FV(s)
(η)

Γ ` λx.s x = s : α⇒ β

Γ ` s : unit(unit)
Γ ` s = 〈〉 : unit

Γ ` p : α× β(pair)
Γ ` 〈Fst(p), Snd(p)〉 = p : α× β

Γ ` s : α Γ ` t : β(Fst)
Γ ` Fst(〈s, t〉) = s : α

Γ ` s : α Γ ` t : β(Snd)
Γ ` Snd(〈s, t〉) = t : β

A simply-typed λ-theory is a theory that is closed under all the rules in λβη.

Remark. Since we are only considering simply-typed theories in this project, we write
theory meaning simply-typed theory.

A.2 Categorical Semantics of Typed Terms

Please refer to [Cro93] for a detailed discussion on how such a categorical semantics
arises. Here, we only provide the definition and point out essential lemmas in proving
the soundness and completeness results.

We first provide the categorical interpretation of the syntax with respect to a structure
in a cartesian closed category.

Definition A.4 (Categorical Semantics of Typed Terms). Let C be a cartesian closed
category. A structrue M in C is specified by giving each type variable γ ∈ TV an object
JγKM of C. The interpretation of types and typed terms with respect to the structure
M is defined by induction as follows, where > is the terminal object of C and τA is the
unique morphism from the object A to >,
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• Types
JunitK := >
JγK := JγKM, where γ ∈ TV
Jα× βK := JαK× JβK
Jα⇒ βK := JαK⇒ JβK

• Type Contexts
J∅K := >
JΓ ∪ {x : α}K := JΓK× JαK

• Typed Terms

(var)
JΓ ∪ {x : α} ` x : αK := π2 : JΓK× JαK→ JαK

JΓ ∪ {x : α} ` s : βK = f : JΓK× JαK→ JβK
(abs)

JΓ ` λx.s : α⇒ βK := λ(f) : JΓK→ (JαK⇒ JβK)

JΓ ` s : α⇒ βK = S : JΓK→ (JαK⇒ JβK) JΓ ` t : αK = T : JΓK→ JαK
(app)

JΓ ` s t : βK := ev ◦ 〈S, T 〉 : JΓK→ (JαK⇒ JβK)× JαK→ JβK

(unit)
JΓ ` 〈〉 : unitK := τJΓK : JΓK→ >

JΓ ` s : αK = S JΓ ` t : βK = T
(pair)

JΓ ` 〈s, t〉 : α× βK := 〈S, T 〉 : JΓK→ JαK× JβK

JΓ ` p : α× βK = P : JΓK→ JαK× JβK
(Fst)

JΓ ` Fst(p) : αK := π1 ◦ P : JΓK→ JαK

JΓ ` p : α× βK = P : JΓK→ JαK× JβK
(Snd)

JΓ ` Snd(p) : βK := π2 ◦ P : JΓK→ JβK

We say a structure M satisfies a rule Γ ` s = t : α if the interpretations of Γ ` s : α
and Γ ` t : α with respect to M are the same. i.e. JΓ ` s : αK = JΓ ` t : αK. We say a
structure M is a model of a theory T if M satisfies all the rules in T . i.e.

T B Γ ` s = t : α =⇒ JΓ ` s : αK = JΓ ` t : αK.

Remark. Since any λ-theory must be closed under all the rules in λβη, a model of any
λ-theory must also be a model of λβη.
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A.3 Soundness and Completeness Theorems

Now we show that this interpretation actually makes sense. i.e. If two typed terms are
equal in λβη, their interpretations are also the same with respect to any structure in any
cartesian closed category. First we show that capture-free substitution is soundly mod-
elled by categorical composition with the help of the following propositions on cartesian
closed category.

Proposition A.2. Let C be a cartesian closed category and t : A → D be a morphism
in C. Let g : (C × A) × D → B and k : (C × D) × A → B be morphisms such that
k = g ◦ φ, where φ := 〈π1 × IdA, π2 ◦ π1〉 : (C ×D)× A→ (C × A)×D. Then,

g ◦ 〈IdC × IdA, t ◦ π1〉 = k ◦ 〈IdC , t〉 × IdA.

Proof. Consider

φ ◦ 〈IdC ,t〉 × IdA = 〈π1 × IdA, π2 ◦ π1〉 ◦
(
〈IdC , t〉 × IdA

)
= 〈
(
π1 × IdA

)
◦
(
〈IdC , t〉 × IdA

)
, π2 ◦ π1 ◦

(
〈IdC , t〉 × IdA

)
〉

= 〈
(
π1 ◦ 〈IdC , t〉

)
× IdA, π2 ◦ π1 ◦

〈
〈IdC , t〉 ◦ π1, IdA ◦ π2〉

〉
= 〈IdC × IdA, t ◦ π1〉.

Thus,
g ◦ 〈IdC × IdA, t ◦ π1〉 = g ◦ φ ◦ 〈IdC , t〉 × IdA = k ◦ 〈IdC , t〉 × IdA.

Proposition A.3. Let C be a cartesian closed category and f : A×B → C and g : A′ →
A be morphisms in C, then

λ(f) ◦ g = λ(f ◦ (g × IdB))

Proof. Note that for any h : A′×B → C, there is an unique morphism λ(h) : A′ → (B ⇒
C) that satisfies the equation h = ev ◦

(
λ(h) × IdB

)
. So, for any k : A′ → (B ⇒ C), we

have k = λ(ev ◦ (k × IdB)).

λ(f) ◦ g = λ
(
ev ◦

(
(λ(f) ◦ g)× IdB

))
= λ

(
ev ◦

(
(λ(f)× IdB) ◦ (g × IdB)

))
= λ

((
ev ◦ (λ(f)× IdB)

)
◦ (g × IdB)

)
= λ

(
f ◦ (g × IdB)

)
Lemma A.4. (Substitution Lemma) Let M be a structure in a cartesian closed category
C. If Γ ∪ {x : α} ` s : β and Γ ` t : α, then

JΓ ` s[t/x] : βK = JΓ ∪ {x : α} ` s : βK ◦
〈
IdJΓK, JΓ ` t : αK

〉
.

Proof. Induction on the structure of typed term s.
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(var) If s ≡ x is a variable, then α = β, and

JΓ ` x[t/x] : βK = JΓ ` t : βK = π2 ◦
〈
IdJΓK, JΓ ` t : βK

〉
= JΓ ∪ {x : β} ` x : βK ◦

〈
IdJΓK, JΓ ` t : βK

〉
(abs) If s ≡ λy.u is an abstraction, say Γ ∪ {x : α} ` λy.u : ζ ⇒ η, then

JΓ ` (λy.u)[t/x] : ζ ⇒ ηK
= JΓ ` λy.u[t/x] : ζ ⇒ ηK

= λ
(
JΓ ∪ {y : ζ} ` u[t/x] : ηK

)
= λ

(
JΓ ∪ {y : ζ} ∪ {x : α} ` u : ηK ◦

〈
IdJΓK×JζK, JΓ ∪ {y : ζ} ` t : ζK

〉)
= λ

(
JΓ ∪ {y : ζ} ∪ {x : α} ` u : ηK ◦

〈
IdJΓK × IdJζK, JΓ ` t : αK ◦ π1

〉)
= λ

(
JΓ ∪ {x : α} ∪ {y : ζ} ` u : ηK ◦

〈
IdJΓK, JΓ ` t : αK

〉
× IdJζK

)
(Prop. A.2)

= λ
(
JΓ ∪ {x : α} ∪ {y : ζ} ` u : ηK

)
◦
〈
IdJΓK, JΓ ` t : αK

〉
(Prop. A.3)

= JΓ ∪ {x : α} ` λy.u : ζ ⇒ ηK ◦
〈
IdJΓK, JΓ ` t : αK

〉
(app) If s ≡ uv is an application, we have

JΓ ` uv[t/x] : βK
= JΓ ` u[t/x]v[t/x] : βK
= ev ◦

〈
JΓ ` u[t/x] : ζ ⇒ βK, JΓ ` v[t/x] : ζK

〉
= ev ◦

〈
JΓ ∪ {x : α} ` u : ζ ⇒ βK ◦

〈
IdJΓK, JΓ ` t : αK

〉
,

JΓ ∪ {x : α} ` v : ζK ◦
〈
IdJΓK, JΓ ` t : αK

〉〉
(IH)

= ev ◦
〈
JΓ ∪ {x : α} ` u : ζ ⇒ βK, JΓ ∪ {x : α} ` v : ζK

〉
◦
〈
IdJΓK, JΓ ` t : αK

〉
= JΓ ∪ {x : α} ` u v : βK ◦

〈
IdJΓK, JΓ ` t : αK

〉
(unit) If s = 〈〉, then β = unit, and

JΓ ` 〈〉[t/x] : unitK = JΓ ` 〈〉 : unitK = τJΓK : JΓK→ >.

Moreover,

JΓ ∪ {x : α} ` 〈〉 : unitK ◦
〈
IdJΓK, JΓ ` t : αK

〉
: JΓK→ >.

Since the morphisms from JΓK to the terminal object > are unique, we have

JΓ ` 〈〉[t/x] : unitK = JΓ ∪ {x : α} ` 〈〉 : unitK ◦
〈
IdJΓK, JΓ ` t : αK

〉
.
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(pair) If s = 〈u, v〉 is a pair, then

JΓ ` 〈u, v〉[t/x] : ζ × ηK
= JΓ ` 〈u[t/x], v[t/x]〉 : ζ × ηK
=
〈
JΓ ` u[t/x] : ζK, JΓ ` v[t/x] : ηK

〉
=
〈
JΓ ∪ {x : α} ` u : ζK ◦

〈
IdJΓK, JΓ ` t : αK

〉
,

JΓ ∪ {x : α} ` v : ηK ◦
〈
IdJΓK, JΓ ` t : αK

〉〉
(IH)

=
〈
JΓ ∪ {x : α} ` u : ζK, JΓ ∪ {x : α} ` v : ηK

〉
◦
〈
IdJΓK, JΓ ` t : αK

〉
= JΓ ∪ {x : α} ` 〈u, v〉 : ζ × ηK ◦

〈
IdJΓK, JΓ ` t : αK

〉
(Fst) If s = Fst(u), then

JΓ ` Fst(u)[t/x] : ζK
= JΓ ` Fst

(
u[t/x]

)
: ζK

= π1 ◦ JΓ ` u[t/x] : ζ × ηK
= π1 ◦

(
JΓ ∪ {x : α} ` u : ζ × ηK ◦

〈
IdJΓK, JΓ ` t : αK

〉)
(IH)

= JΓ ∪ {x : α} ` Fst(u) : ζ × ηK ◦
〈
IdJΓK, JΓ ` t : αK

〉
(Snd) Similar to the case (Fst).

Note that the fact that capture-free substitution is interpreted soundly by composition
is essential in proving the (β) case for the soundness theorem.

Theorem A.5. (Soundness Theorem) Given a cartesian closed category C, any structure
M in C is a model of the λβη-theory.

Proof. We show that a structure M satisfies all rules in λβη by induction on the rules of
λβη. The proofs of the rules (refl),(sym) and (trans) follows directly from the fact that
= is an equivalence relation.

(app) By inductive hypothesis, M satisfies Γ ` s = s′ : α⇒ β and Γ ` t = t′ : α.

JΓ ` s t : βK = ev ◦
〈
JΓ ` s : α⇒ βK, JΓ ` t : αK

〉
= ev ◦

〈
JΓ ` s′ : α⇒ βK, JΓ ` t′ : αK

〉
= JΓ ` s′ t′ : βK

Thus M satisfies Γ ` s t = s′ t′ : β.

(abs) By inductive hypothesis, M satisfies Γ ∪ {x : α} ` s = t : β.

JΓ ` λx.s : α⇒ βK = λ
(
JΓ ∪ {x : α} ` s : βK

)
= λ

(
JΓ ∪ {x : α} ` t : βK

)
= JΓ ` λx.t : α⇒ βK

Thus M satisfies Γ ` λx.s = λx.t : α⇒ β.
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(β) Recall the (β) rule states that Γ ` (λx.s)t = s[t/x] : β, where Γ ∪ {x : α} ` s : β
and Γ ` t : α are typed terms.

JΓ ` (λx.s)t : βK = ev ◦
〈
λ(JΓ ∪ {x : α} ` s : βK), JΓ ` t : αK

〉
= ev ◦ (λ(JΓ ∪ {x : α} ` s : βK)× IdJαK) ◦

〈
IdJΓK, JΓ ` t : αK

〉
= JΓ ∪ {x : α} ` s : βK ◦

〈
IdJΓK, JΓ ` t : αK

〉
= JΓ ` s [t/x] : βK (Sub. Lemma A.4)

Thus, M satisfies Γ ` (λx.s) t = s [t/x] : β.

(η) Assume that x 6∈ FV(s), we have

JΓ ` λx.s x : α⇒ βK = λ
(
JΓ ∪ {x : α} ` s x : βK

)
= λ

(
ev ◦

〈
JΓ ∪ {x : α} ` s : α⇒ βK, JΓ ∪ {x : α} ` x : αK

〉)
= λ

(
ev ◦

〈
JΓ ` s : α⇒ βK ◦ π1, π2

〉)
= λ

(
ev ◦

(
JΓ ` s : α⇒ βK× IdJαK

))
= JΓ ` s : α⇒ βK

Thus, M satisfies Γ ` λx.s x = s : α⇒ β.

(unit) Consider JΓ ` s : unitK = τJΓK : JΓK → >. Since > is the terminal object, τJΓK

is unique. Therefore, JΓ ` s : unitK = JΓ ` 〈〉 : unitK = τJΓK, and M satisfies
Γ ` s = 〈〉 : unit.

(pair) Let Γ ` p : α× β be a typed term.

JΓ ` 〈Fst(p),Snd(p)〉 : α× βK =
〈
JΓ ` Fst(p) : αK,JΓ ` Snd(p) : βK

〉
=
〈
π1 ◦ JΓ ` p : α× βK, π2 ◦ JΓ ` p : α× βK

〉
= JΓ ` p : α× βK

(Fst) Let Γ ` s : α and Γ ` t : β.

JΓ ` 〈Fst(〈s,t〉) : αK = π1 ◦ JΓ ` 〈s,t〉 : α× βK
= π1 ◦

〈
JΓ ` 〈s〉 : αK,JΓ ` 〈t〉 : βK

〉
= JΓ ` s : αK

(Snd) Similar to the case (Fst).

Knowing that the interpretation actually makes sense, we can define a λ-theory based
on any cartesian closed category.

Corollary A.6. Every cartesian closed category C gives rise to a λ-theory Th(C).

Proof. Let M be a structure in C. Define a theory as follows.

Th(C) :=
{

Γ ` s = t : α | JΓ ` s : αK = JΓ ` t : αK
}

By soundness theorem, M satisfies all rules in λβη, hence λβη is included in Th(C). So,
Th(C) is indeed a λ-theory.
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Soundness tells us that for any cartesian closed category, we can define a λ-theory with
respect to it. Now, we consider the converse. Given a λ-theory, we would like to construct
a cartesian closed category in which the theory can be modelled soundly in the category.
More specifically, we would like to construct the “smallest” such category. We call it the
classifying category of the theory. The classifying category is the “smallest” in the sense
that for any other categories D, in which the theory can be modelled soundly, there is a
cartesian closed functor F from the classifying category to D such that the interpretation
of the theory in D can be expressed as the composition of the interpretation in the
classifying category and F .

To establish this, we need to consider the two categories. Given cartesian closed
categories C and D, we define the category of cartesian closed functors CCCat∼=(C,D) as
the category with objects as cartesian closed functors from C to D, and morphisms as
natural isomorphisms. Recall a cartesian closed functor F : C → D is a functor where

• F preserves products via the isomorphism ΦA,B := 〈Fπ1, Fπ2〉,

• F preserves exponential via the isomorphism ΨA,B := λ(F (ev) ◦ Φ−1
A⇒B,A).

Let T be a λ-theory and C be a cartesian closed category. We define the category of
models Mod∼=(T , C) as the category with objects as models of the λ-theory T in C,
and morphisms as model homomorphisms h : M → N which is given by a collection of
isomorphisms hγ : JγKM → JγKN in C, for each type variable γ ∈ TV, and

hα×β := hα × hβ and hα⇒β := h−1
α ⇒ hβ := λ

(
hβ ◦ ev ◦ (Id× h−1

α )
)

Definition A.5 (Classifying Category). Given a λ-theory T , we say a cartesian closed
category is classifying, denoted as Cl(T ), if there is a “generic” model G that soundly
interpret T in Cl(T ), and for any cartesian closed category D, there is a natural equiv-
alence

CCCat∼=(Cl(T ),D) ' Mod∼=(T ,D).

The idea behind this definition is that for any cartesian closed category D, a model
of T in D can be represented by a functor from Cl(T ) to D. It is not difficult to see
that for any given λ-theory, its classifying category and “generic” model are unique up to
isomorphism.

We shall first set up the equivalence in the forward direction. Note that this direction
is well-defined for any cartesian closed category C.
Definition A.6 (Modelling functors). Let C and D be cartesian closed categories, T be
a λ-theory and M be a model of T in C. We define a family of modelling functors ApM :
CCCat∼=(C,D) → Mod∼=(T ,D) by defining, for any cartesian closed functor F : C → D,
a model ApMF of T in D, where

JγKApMF := F (JγKM),

and for any natural isomorphism φ : F → G, a model homomorphism ApMφ : ApMF →
ApMG where (

ApMφ
)
γ

:= φJγKM .

Remark. It is easy to check that ApMF is indeed a model of T in D, ApMφ is in-
deed a model homomorphism and ApM is a well-defined functor from CCCat∼=(C,D) to
Mod∼=(T ,D). We call this ApM a collection of modelling functors since it specifies a
family of models of T in D such that there is some cartesian closed functor F : C → D
that maps to this model via ApM.
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Now, we prove the completeness theorem by first constructing a cartesian closed cat-
egory based on the syntax of the given λ-theory T and then proving that it is classifying
by finding the “inverse” for the functor ApG : CCCat∼=(Cl(T ),D)→ Mod∼=(T ,D).

Theorem A.7. (Completeness Theorem) Given a λ-theory T , we can construct a clas-
sifying category Cl(T ).

Proof. Define the classifying category Cl(T ) as follows:

• objects are types of T ,

• morphisms f : α → β are equivalence classes of typed terms
[
{x : α} ` M : β

]
,

where two typed terms are equivalent if they are provably equal in T . We write
{x : α} `M : β instead of

[
{x : α} `M : β

]
,

• composition of g = {y : β} ` N : γ and f = {x : α} `M : β is given by

f ◦ g = {x : α} ` N [M/y] : γ,

• the identity morphism of the object α is Idα := {x : α} ` x : α,

• the product of objects α and β is α× β with projections

π1 = {z : α× β} ` Fst(z) : α and π2 = {z : α× β} ` Snd(z) : β,

• the pairing of morphisms f = {x : γ} `M : α and g = {x : γ} ` N : β is

〈f , g〉 = {x : γ} ` 〈M,N〉 : α× β

• the exponential of objects β and γ is β ⇒ γ and the evaluating morphism is

ev = {z : (β ⇒ γ)× β} ` Fst(z) Snd(z) : γ,

where for any morphism f = {z : α× β} `M : γ, the exponential mate of f is

λ(f) = {x : α} ` λy.(M [〈x, y〉/z]) : β ⇒ γ,

where x and y are distinct and fresh variables.

We first need to check that Cl(T ) is indeed a cartesian closed category. Consider
morphisms α f←− ζ

g−→ β where f = {x : ζ} `M : α and g = {x : ζ} ` N : β. Then

π1 ◦ 〈f , g〉 =
(
{z : α× β} ` Fst(z) : α

)
◦
(
{x : ζ} ` 〈M,N〉 : α× β

)
= {x : ζ} ` Fst(z)[〈M,N〉/z] : α

= {x : ζ} ` Fst(〈M,N〉) : α

= {x : ζ} `M : α = f

and similarly, π2 ◦ 〈f , g〉 = g. To prove that the pairing is indeed unique, it is enough to
show that for any h = {x : ζ} ` p : α× β, we have h = 〈π1 ◦ h, π2 ◦ h〉.

〈π1 ◦ h, π2 ◦ h〉
=
〈(
{z : α× β} ` Fst(z) : α

)
◦
(
{x : ζ} ` p : α× β

)
,(

{z : α× β} ` Snd(z) : α
)
◦
(
{x : ζ} ` p : α× β

)〉
=
〈
{x : ζ} ` Fst(p) : α, {x : ζ} ` Snd(p) : β

〉
= {x : ζ} `

〈
Fst(p), Snd(p)

〉
: α× β

= {x : ζ} ` p : α× β = h
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The terminal object of Cl(T ) is the type unit. Indeed, for any type α, there exists a
unique morphism

τα = {x : α} ` 〈〉 : unit.

Now we prove that Cl(T ) is indeed cartesian closed by showing that it has exponen-
tials. For any types β and γ, there is a type β ⇒ γ and morphism ev := {z : (β ⇒
γ)× β} ` Fst(z) Snd(z) : γ where for any f = {z : α× β} ` M : γ, there is a morphism
λ(f) = {x : α} ` λy.

(
M [〈x, y〉]/z

)
: β ⇒ γ and

ev ◦
(
λ(f)× Idβ

)
= ev ◦

〈
λ(f) ◦ π1,Idβ ◦ π2

〉
= ev ◦

〈
{w : α× β} `

(
λy.(M [〈x, y〉/z])

)
[Fst(w)/x] : β ⇒ γ,π2

〉
= ev ◦

〈
{w : α× β} ` λy.(M [〈x, y〉/z][Fst(w)/x]) : β ⇒ γ, {w : α× β} ` Snd(w) : β

〉
= ev ◦

(
{w : α× β} `

〈
λy.(M [〈x, y〉/z][Fst(w)/x]), Snd(w)

〉
: (β ⇒ γ)× β

)
= {w : α× β} `

(
λy.(M [〈x, y〉/z][Fst(w)/x])

)
Snd(w) : γ

= {w : α× β} `M [〈x, y〉/z][Fst(w)/x][Snd(w)/y] : γ

= {w : α× β} `M [〈Fst(w), Snd(w)〉/z] : γ

= {w : α× β} `M [w/z] : γ

= f .

Finally, to prove that the exponential is unique, we show that for any h = {w : α} ` H :
β ⇒ γ,

λ(ev) ◦ (h× Idβ) = λ(ev) ◦ 〈h ◦ π1,Idβ ◦ π2〉
= λ

(
ev ◦ {z : α× β} ` 〈H[Fst(z)/w], Snd(z)〉 : (β ⇒ γ)× β

)
= λ

(
{z : α× β} ` H[Fst(z)/w] Snd(z) : γ

)
= {x : α} ` λy.

((
H[Fst(z)/w] Snd(z)

)
[〈x, y〉/z]

)
: β ⇒ γ

= {x : α} ` λy.
((
H[x/w] y

))
: β ⇒ γ

= {x : α} ` H[x/w] : β ⇒ γ

= h

Now we show that Cl(T ) is classifying. We define the “generic” model G of T in
Cl(T ) by setting

JγKG := γ

for all type variables γ, thus JαK = α for all types α. Let D be a cartesian closed
category. To establish the equivalence CCCat∼=(Cl(T ),D) ' Mod∼=(T ,D) we define a
functor Ap−1

G : Mod∼=(T ,D) → CCCat∼=(Cl(T ),D), and prove that it is the “inverse” of
the modelling functors.

For any model M of T in D, we define the functor

Ap−1
G (M) : Cl(T ) −→ D

α 7−→ JαKM
{x : α} `M : β 7−→ J{x : α} `M : βKM : JαKM → JβKM.
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Soundness tells us that Ap−1
G (M) is well-defined and it is easy to check that it is a cartesian

closed functor. For any model homomorphism h : M→ N in Mod∼=(T ,D), we define the
natural isomorphism Ap−1

G (h) : Ap−1
G (M)→ Ap−1

G (N) by setting(
Ap−1

G (h)
)
α

:= hα : JαKM → JαKN.

We first show that
(
Ap−1

G (h)
)
α

: JαKM → JαKN is a natural transformation. For any
morphism Γ ` M : β in Cl(T ), we prove by induction on the derivation of the typed
terms Γ `M : β that the following diagram commutes.

JΓKM
hΓ //

JΓ`M :βKM
��

JΓKN
JΓ`M :βKN
��

JβKM
hβ // JβKN

(var) JΓ∪{x : α} ` x : αKN◦hΓ×α = π2◦(hΓ×hα) = hα◦π2 = hα◦JΓ∪{x : α} ` x : αKM

(abs) Let n = JΓ ∪ {x : α} ` s : βKN and m = JΓ ∪ {x : α} ` s : βKM. By induction
hypothesis, we know that n◦hΓ×α = hβ ◦m, and this is equivalent to n◦(hΓ×Id) =
hβ ◦m ◦ (Id× h−1

α ). We want to prove that

JΓ ` λx.s : α⇒ βKN ◦ hΓ = hα⇒β ◦ JΓ ` λx.s : α⇒ βKM
⇐⇒ λ(n) ◦ hΓ = (h−1

α ⇒ hβ) ◦ λ(m)

= λ
(
hβ ◦ ev ◦ (Id× h−1

α )
)
◦ λ(m).

We would prove it by showing that λ(n) ◦ hΓ and λ
(
hβ ◦ ev ◦ (Id× h−1

α )
)
◦ λ(m)

have the same exponential mate.

ev ◦
(
λ(n) ◦ hΓ × Id

)
= ev ◦

(
λ(n)× Id

)
◦
(
hΓ × Id

)
= n ◦

(
hΓ × Id

)
,

and

ev ◦
((
λ
(
hβ ◦ ev ◦ (Id× h−1

α )
)
◦ λ(m)

)
× Id

)
= ev ◦

(
λ
(
hβ ◦ ev ◦ (Id× h−1

α )
)
× Id

)
◦
(
λ(m)× Id

)
= hβ ◦ ev ◦ (Id× h−1

α ) ◦
(
λ(m)× Id

)
= hβ ◦m ◦ (Id× h−1

α )

By the induction hypothesis, they are equal.

(app) Let n = JΓ ` s : α ⇒ βKN and m = JΓ ` s : α ⇒ βKM, and n′ = JΓ ` t : αKN
and m′ = JΓ ` t : αKM. So, by induction hypothesis, n ◦ hΓ = hα⇒β ◦m and
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n′ ◦ hΓ = hα ◦m′.

JΓ ` st : βKN
= ev ◦ 〈n,n′〉 ◦ hΓ

= ev ◦ 〈n ◦ hΓ,n
′ ◦ hΓ〉

= ev ◦ 〈hα⇒β ◦m, hα ◦m′〉
= ev ◦

〈
λ
(
hβ ◦ ev ◦ (Id× h−1

α )
)
◦m, hα ◦m′

〉
= ev ◦

〈
λ
(
hβ ◦ ev ◦ (Id× h−1

α ) ◦ (m× Id)
)
, hα ◦m′

〉
(prop A.3)

= ev ◦
(
λ
(
hβ ◦ ev ◦ (Id× h−1

α ) ◦ (m× Id)
)
× Id

)
◦ 〈Id, hα ◦m′〉

= hβ ◦ ev ◦ (Id× h−1
α ) ◦ (m× Id) ◦ 〈Id, hα ◦m′〉

= hβ ◦ ev ◦ (m× h−1
α ) ◦ 〈Id, hα ◦m′〉

= hβ ◦ ev ◦ 〈m ◦ Id, h−1
α ◦ hα ◦m′〉

= hβ ◦ ev ◦ 〈m,m′〉

(unit) JΓ ` 〈〉 : unitKN◦hΓ = τJΓKN ◦hΓ : JΓKM → unit must be equals to τJΓKM : JΓKM → unit
since unit is the terminal object. Note that hunit ◦ JΓ ` 〈〉 : unitKM = τJΓKM . Thus,
JΓ ` 〈〉 : unitKN ◦ hΓ and hunit ◦ JΓ ` 〈〉 : unitKM are the same.

(pair) Let n = JΓ ` s : αKN and m = JΓ ` s : αKM, and n′ = JΓ ` t : βKN and
m′ = JΓ ` t : βKM. By inductive hypothesis, n◦hΓ = hα ◦m and n′ ◦hΓ = hβ ◦m′.

JΓ ` 〈s,t〉 : α× βKN ◦ hΓ = 〈n,n′〉 ◦ hΓ

= 〈n ◦ hΓ,n
′ ◦ hΓ〉

= 〈hα ◦m′, hβ ◦m′〉
= (hα × hβ) ◦ 〈m,m′〉
= hα×β ◦ 〈m,m′〉

(Fst) Let n = JΓ ` p : α×βKN andm = JΓ ` p : α×βKM. Then, by inductive hypothesis,
n ◦ hΓ = hα×β ◦m.

JΓ ` Fst(p) : αKN ◦ hΓ = π1 ◦ n ◦ hΓ

= π1 ◦ hα×β ◦m
= π1 ◦ (hα × hβ) ◦m
= hα ◦ π1 ◦m
= hα ◦ JΓ ` Fst(p) : αKM

(Snd) This is similar to the case (Fst).

Thus, Ap−1
G (h) is indeed a natural transformation. Since h is a model homomorphism,

by definition,
(
Ap−1

G (h)
)
α
is an isomorphism. So, Ap−1

G (h) is a natural isomorphism.
The final thing we need to check is that ApG and Ap−1

G are indeed equivalence. We
define natural isomorphisms

µ : ApGAp
−1
G
∼= IdMod∼=(T ,D) and ν : IdCCCat∼=(Cl(T ),D)

∼= Ap−1
G ApG

54



such that for any model M of T in D, µM : ApGAp
−1
G M→M is defined as

(µM)γ := IdJγKM : JγKApGAp−1
G M = JγKM → JγKM

and for any cartesian closed functor F : Cl(T )→ D, we define

(νF )α := IdFα : Fα→
(
Ap−1

G (ApGF )
)
α = F (JαKG) = Fα.

Obviously, µ and ν are natural isomorphisms. Thus,

ApG : CCCat∼=(Cl(T ),D) ' Mod∼=(T ,D) : Ap−1
G

and Cl(T ) is indeed a classifying category with the “generic” model G.
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B Proofs
Lemma 4.1. Let M,N ∈ Λr and x be a variable.

(i) (M [N/x])d ≡Md[Nd/x]

(ii) (M〈N/x〉)d ≡ ∂Md

∂x
·Nd

Proof. (i) Straightforward induction on the structure of M .

(ii) Prove by induction on the structure of M . The only interesting case is when M is
an application.(

M [~L, ~N !]〈N ′/x〉
)d

≡
(
M〈N ′/x〉 [~L, ~N !]

)d
+
(
M
(
[~L, ~N !]〈N ′/x〉

))d
≡
(
Dk
(
M〈N ′/x〉

)d · ~Ld) ∑Nd
i +

(∑
j

M
[
Lj〈N ′/x〉, ~L−j, ~N !

])d
+

(∑
i

M
[
Ni〈N ′/x〉, ~L, ~N !

])d
≡
(
Dk
(
M〈N ′/x〉

)d · ~Ld) ∑Nd
i +

∑
j

(
DkMd ·

(
(Lj〈N ′/x〉)d, ~Ld−j

)) ∑
Nd
i +∑

i

(
Dk+1Md ·

(
(Ni〈N ′/x〉)d, ~Ld

)) ∑
Nd
i

≡
(
Dk
(∂Md

∂x
·N ′d

)
· ~Ld
) ∑

Nd
i +

∑
j

(
DkMd ·

(∂Ldj
∂x
·N ′d, ~Ld−j

)) ∑
Nd
i

∑
i

(
Dk+1Md ·

(∂Nd
i

∂x
·N ′d, ~Ld

)) ∑
Nd
i (IH)

≡
(
Dk
(∂Md

∂x
·N ′d

)
· ~Ld +

∑
j

DkMd ·
(∂Ldj
∂x
·N ′d, ~Ld−j

)) ∑
Nd
i +

∑
i

(
D
(
DkMd · ~Ld

)
·
(∂Nd

i

∂x
·N ′d

)) ∑
Nd
i

≡
(
∂

∂x

(
DkMd · ~Ld

)
·N ′d

) ∑
Nd
i +

(
D
(
DkMd · ~Ld

)
·
(∂∑Nd

i

∂x
·N ′d

)) ∑
Nd
i

≡ ∂

∂x

((
DkMd · ~Ld

) ∑
Nd
i

)
·N ′d

≡ ∂

∂x

(
M [~L, ~N !]

)d ·N ′d
Proposition 4.2. For any M,N ∈ Λr, we have

(i) Γ `R M : α ⇐⇒ Γ `D Md : α,

(ii) If M and N are provably equal in the theory λβηR, then their translations are also
provably equal in λβηD. i.e.

λβηR B Γ `R M = N : α =⇒ λβηD B Γ `D Md = Nd : α.
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Proof. (i) Easy induction on the length of the proofs.

(ii) Induction on all the rules in the theory λβηR. The only interesting rules to consider
is the (βR) rule.

Consider λβηR B Γ `R (λx.M)[~L, ~N !] = M〈L/x〉
[∑

Ni/x
]

: α. By part (i), we
know that

(
(λx.M)[~L, ~N !]

)d and
(
M〈L/x〉

[∑
Ni/x

])d are both differential typed
terms.

λβηD B
(
(λx.M)[~L, ~N !]

)d ≡ (Dk(λx.Md) · ~Ld
) ∑

i

Nd
i

=

(
λx.
(∂kMd

∂xk
· ~Ld
)) ∑

i

Nd
i (βD)

=
(∂kMd

∂xk
· ~Ld
) [∑

i

Nd
i /x
]

(β)

≡
(
M〈L/x〉

[∑
Ni/x

])d
: α (Lemma 4.1)

Lemma 4.3. Let S, T ∈ Λd and x a variable.

(i) λβηR B Γ `R
(
S[T/x]

)r
= Sr[T r/x] : α

(ii) λβηR B Γ `R
(∂S
∂x
· T
)r

= Sr〈T r/x〉 : α

Proof. (i) Straightforward induction on the structure of S.

(ii) Induction on the structure of S.

(app) Consider the case where S ≡ sU is an application.(∂sU
∂x
· T
)r
≡
((∂s

∂x
· T
)
U +

(
Ds ·

(∂U
∂x
· T
))
U

)r
≡
(∂s
∂x
· T
)r[

(U r)!
]

+
(
Ds ·

(∂U
∂x
· T
))r[

(U r)!
]

≡
(∂s
∂x
· T
)r[

(U r)!
]

+
(
λy.
(
sr
[(∂U
∂x
· T
)r
, y!
]))[

(U r)!
]

=
(
sr〈T r/x〉

)[
(U r)!

]
+ sr

[
U r〈T r/x〉, (U r)!

]
(IH and βR)

≡
(
sr
[
(U r)!

])
〈T r/x〉

≡ (sU)r〈T r/x〉
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(D) Consider the case where S ≡ Ds · u is a differential application.(
∂

∂x
(Ds · u) · T

)r
≡
(
D
(∂s
∂x
· T
)
· u+ Ds ·

(∂u
∂x
· T
))r

≡ λy.

((∂s
∂x
· T
)r

[ur, y!]

)
+ λy.

(
sr
[(∂u
∂x
· T
)r
, y!
])

= λy.
(
sr〈T r/x〉[ur, y!]

)
+ λy.(sr[ur〈T r/x〉, y!]) (IH)

≡ λy.
(
sr〈T r/x〉[ur, y!] + sr

(
[ur〈T r/x〉, y!] + [ur, y〈T r/x〉, y!]

))
(∗)

≡ λy.
(
sr〈T r/x〉[ur, y!] + sr

(
[ur, y!]〈T r/x〉

))
≡
(
λy.(sr[ur, y!])

)
〈T r/x〉

(∗) Note that by notation 3.1, [ur, y〈T r/x〉, y!] ≡ [ur, 0, y!] ≡ 0.

Proposition 4.4. For any s, t ∈ Λd, we have

(i) Γ `D s : α ⇐⇒ Γ `R sr : α,

(ii) If s and t are provably equal in the theory λβηD, then their translations are also
provably equal in λβηR. i.e.

λβηD B Γ `D s = t : α =⇒ λβηR B Γ `R sr = tr : α.

Proof. (i) Easy induction on the length of the proof.

(ii) We prove it by induction on all the rules in the theory λβηD. We would only

consider the (βD) rule where D(λx.s) · T = λx.
(∂s
∂x
· T
)
.(

D(λx.s) · T
)r

= λy.
(
(λx.sr) [T r,y!]

)
= λy.

(
sr〈T r/x〉[y/x]

)
= λx.

(
sr〈T r/x〉

)
= λx.

(∂s
∂x
· T
)r

(Lemma 4.3)

=

(
λx.
(∂s
∂x
· T
))r

Proposition 5.1. Let f : A1×A2 → B and g, h : A1 → A2 be morphisms in a cartesian
closed differential category. We have

(f ? g) ? h = (f ? h) ? g.
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Proof. Note that 〈0, 0〉 = 0.

(f ? g) ? h

= D
[
D[f ] ◦

〈
〈0, g ◦ π1〉, Id

〉]
◦
〈
〈0, h ◦ π1〉, Id

〉
= D

[
D[f ]

]
◦
〈
D
[〈
〈0, g ◦ π1〉, Id

〉]
,
〈
〈0, g ◦ π1〉, Id

〉
◦ π2

〉
◦
〈
〈0, h ◦ π1〉, Id

〉
(CD5)

= D
[
D[f ]

]
◦
〈〈
〈0, D[g] ◦ (π1 × π1)〉, π1

〉
,
〈
〈0, g ◦ π1〉, Id

〉
◦ π2

〉
◦
〈
〈0, h ◦ π1〉, Id

〉
(CD3-5)

= D
[
D[f ]

]
◦
〈〈
〈0, D[g] ◦ 〈0, π1〉〉, 〈0, h ◦ π1〉

〉
,
〈
〈0, g ◦ π1〉, Id

〉〉
= D

[
D[f ]

]
◦
〈〈
〈0, 0〉, 〈0, h ◦ π1〉

〉
,
〈
〈0, g ◦ π1〉, Id

〉〉
(CD2)

= D
[
D[f ]

]
◦
〈〈

0, 〈0, h ◦ π1〉
〉
,
〈
〈0, g ◦ π1〉, Id

〉〉
= D

[
D[f ]

]
◦
〈〈

0, 〈0, g ◦ π1〉
〉
,
〈
〈0, h ◦ π1〉, Id

〉〉
(CD7)

= (f ? h) ? g

Lemma 5.6. (i) If x /∈ FV(t), then

(D(λx.(t[t′/x′])) · u) s = (D(λx′.t) · ((D(λx.t′) · u) s)) t′[s/x].

(ii) if x 6≡ y, x, y /∈ FV(M) and x, y, z /∈ FV(u) ∪ FV(v),( ∂
∂x

(
M [〈x, y〉/z]

)
· u
)

[v/x] =
(∂M
∂z
· 〈u, 0〉

)
[〈v, y〉/z].

Proof. (i)

(D(λx.(t[t′/x′])) · u) s = (D(λx.((λx′.t) t′)) · u) s

= (λx.(
∂

∂x
((λx′.t) t′) · u)) s

= (λx.((
∂

∂x
(λx′.t) · u) t′ + (D(λx′.t) · (∂t

′

∂x
· u)) t′)) s

= (λx.((λx′.(
∂t

∂x
· u)) t′ + (λx′.(

∂t

∂x′
· (∂t

′

∂x
· u))) t′)) s

= (λx.(0 + (
∂t

∂x′
· (∂t

′

∂x
· u))[t′/x′])) s

= (
∂t

∂x′
· (∂t

′

∂x
· u))[t′/x′][s/x]

(D(λx′.t) · ((D(λx.t′) · u) s)) t′[s/x] = (λx′.(
∂t

∂x′
· ((λx.(∂t

′

∂x
· u)) s))) t′[s/x]

= (
∂t

∂x′
· ((∂t

′

∂x
· u)[s/x]))[t′[s/x]/x′]

= (
∂t

∂x′
· (∂t

′

∂x
· u))[s/x][t′[s/x]/x′]

= (
∂t

∂x′
· (∂t

′

∂x
· u))[t′/x′][s/x]

(ii) Prove by induction on structure of M .

59



• M ≡ w 6= z
Note that w 6= x,y since x,y /∈ FV(M)(∂ w[〈x,y〉/z]

∂x
· u
)

[v/x] =
(∂w
∂x
· u
)

[v/x] = 0 =
(∂w
∂z
· 〈u,0〉

)
[〈v,y〉/z]

• M ≡ z(∂ 〈x,y〉
∂x

·u
)

[v/x] = 〈u,0〉 [v/x] = 〈u,0〉 = 〈u,0〉 [〈v,y〉/z] =
(∂z
∂z
·〈u,0〉

)
[〈v,y〉/z]

• M ≡ sT

(∂(sT )

∂z
· 〈u,0〉

)
[〈v,y〉/z]

=
((∂s

∂z
· 〈u,0〉

)
T +

(
Ds ·

(∂T
∂z
· 〈u,0〉

))
T
)

[〈v,y〉/z]

=
(∂s
∂z
· 〈u,0〉

)
[〈v,y〉/z] T [〈v,y〉/z] +(

D(s[〈v,y〉/z]) ·
((∂T

∂z
· 〈u,0〉

)
[〈v,y〉/z]

))
T [〈v,y〉/z]

=
(∂ s[〈x,y〉/z]

∂x
· u
)

[v/x] T [〈v,y〉/z] +(
D(s[〈v,y〉/z]) ·

((∂ T [〈x,y〉/z]

∂x
· u
)

[v/x]
))

T [〈v,y〉/z] (IH)

=
(∂ s[〈x,y〉/z]

∂x
· u
)

[v/x] T [〈x,y〉/z][v/x] +(
D(s[〈x,y〉/z][v/x]) ·

((∂ T [〈x,y〉/z]

∂x
· u
)

[v/x]
))

T [〈x,y〉/z][v/x]

=
((∂ s[〈x,y〉/z]

∂x
· u
)
T [〈x,y〉/z] +(

D(s[〈x,y〉/z]) ·
(∂ T [〈x,y〉/z]

∂x
· u
))

T [〈x,y〉/z]
)

[v/x]

=
(∂ (sT )[〈x,y〉/z]

∂x
· u
)

[v/x]

The proof for the cases for λw.s, Ds · t, 0, s+T , 〈s, t〉, Fst(s) and Snd(s) are trivial.

60


	Introduction
	Differential -Calculus
	Differential -Terms
	Differential Substitution
	Type System D
	Differential -theory

	Resource -Calculus
	Resource Terms and Bags of Resources
	Resource Substitution
	Type System R
	Resource -theory

	Translation Between Differential -Calculus and Resource -Calculus
	From Resource -Calculus to Differential -Calculus
	The Converse - from Differential -Calculus to Resource -Calculus
	Resource -Calculus and Differential -Calculus

	Model of Differential -Calculus
	Cartesian Differential Category
	Cartesian Closed Differential Category
	Categorical Semantics of Differential Typed Terms
	Soundness and Completeness Theorem
	Internal Language of Cartesian Closed Differential Category
	Relational Model

	Conclusion
	References
	Index
	Appendices
	Simply-typed -Calculus and Cartesian Closed Category
	Syntax
	Categorical Semantics of Typed Terms
	Soundness and Completeness Theorems

	Proofs

